mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-10-01 01:26:03 -04:00
1034 lines
52 KiB
Python
1034 lines
52 KiB
Python
import argparse
|
|
import base64
|
|
import copy
|
|
import gc
|
|
import glob
|
|
import io
|
|
import json
|
|
import os
|
|
import re
|
|
import sys
|
|
import time
|
|
import warnings
|
|
import zipfile
|
|
from datetime import datetime
|
|
from pathlib import Path
|
|
|
|
import gradio as gr
|
|
import numpy as np
|
|
import torch
|
|
import transformers
|
|
from PIL import Image
|
|
from tqdm import tqdm
|
|
from transformers import AutoConfig
|
|
from transformers import AutoModelForCausalLM
|
|
from transformers import AutoTokenizer
|
|
from io import BytesIO
|
|
|
|
from modules.html_generator import *
|
|
from modules.stopping_criteria import _SentinelTokenStoppingCriteria
|
|
from modules.ui import *
|
|
|
|
transformers.logging.set_verbosity_error()
|
|
|
|
parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog,max_help_position=54))
|
|
parser.add_argument('--model', type=str, help='Name of the model to load by default.')
|
|
parser.add_argument('--notebook', action='store_true', help='Launch the web UI in notebook mode, where the output is written to the same text box as the input.')
|
|
parser.add_argument('--chat', action='store_true', help='Launch the web UI in chat mode.')
|
|
parser.add_argument('--cai-chat', action='store_true', help='Launch the web UI in chat mode with a style similar to Character.AI\'s. If the file img_bot.png or img_bot.jpg exists in the same folder as server.py, this image will be used as the bot\'s profile picture. Similarly, img_me.png or img_me.jpg will be used as your profile picture.')
|
|
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
|
|
parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.')
|
|
parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
|
|
parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
|
|
parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')
|
|
parser.add_argument('--disk-cache-dir', type=str, help='Directory to save the disk cache to. Defaults to "cache/".')
|
|
parser.add_argument('--gpu-memory', type=int, help='Maximum GPU memory in GiB to allocate. This is useful if you get out of memory errors while trying to generate text. Must be an integer number.')
|
|
parser.add_argument('--cpu-memory', type=int, help='Maximum CPU memory in GiB to allocate for offloaded weights. Must be an integer number. Defaults to 99.')
|
|
parser.add_argument('--deepspeed', action='store_true', help='Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration.')
|
|
parser.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.')
|
|
parser.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.')
|
|
parser.add_argument('--no-stream', action='store_true', help='Don\'t stream the text output in real time. This improves the text generation performance.')
|
|
parser.add_argument('--settings', type=str, help='Load the default interface settings from this json file. See settings-template.json for an example.')
|
|
parser.add_argument('--extensions', type=str, help='The list of extensions to load. If you want to load more than one extension, write the names separated by commas and between quotation marks, "like,this".')
|
|
parser.add_argument('--listen', action='store_true', help='Make the web UI reachable from your local network.')
|
|
parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
|
|
parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
|
|
parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
|
|
parser.add_argument('--picture', action='store_true', help='Adds an ability to send pictures in chat UI modes.')
|
|
args = parser.parse_args()
|
|
|
|
if (args.chat or args.cai_chat) and not args.no_stream:
|
|
print("Warning: chat mode currently becomes somewhat slower with text streaming on.\nConsider starting the web UI with the --no-stream option.\n")
|
|
|
|
settings = {
|
|
'max_new_tokens': 200,
|
|
'max_new_tokens_min': 1,
|
|
'max_new_tokens_max': 2000,
|
|
'preset': 'NovelAI-Sphinx Moth',
|
|
'name1': 'Person 1',
|
|
'name2': 'Person 2',
|
|
'context': 'This is a conversation between two people.',
|
|
'prompt': 'Common sense questions and answers\n\nQuestion: \nFactual answer:',
|
|
'prompt_gpt4chan': '-----\n--- 865467536\nInput text\n--- 865467537\n',
|
|
'stop_at_newline': True,
|
|
'history_size': 0,
|
|
'history_size_min': 0,
|
|
'history_size_max': 64,
|
|
'preset_pygmalion': 'Pygmalion',
|
|
'name1_pygmalion': 'You',
|
|
'name2_pygmalion': 'Kawaii',
|
|
'context_pygmalion': "Kawaii's persona: Kawaii is a cheerful person who loves to make others smile. She is an optimist who loves to spread happiness and positivity wherever she goes.\n<START>",
|
|
'stop_at_newline_pygmalion': False,
|
|
}
|
|
|
|
if args.settings is not None and Path(args.settings).exists():
|
|
new_settings = json.loads(open(Path(args.settings), 'r').read())
|
|
for item in new_settings:
|
|
settings[item] = new_settings[item]
|
|
|
|
if args.deepspeed:
|
|
import deepspeed
|
|
from transformers.deepspeed import HfDeepSpeedConfig, is_deepspeed_zero3_enabled
|
|
from modules.deepspeed_parameters import generate_ds_config
|
|
|
|
# Distributed setup
|
|
local_rank = args.local_rank if args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
|
|
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
|
torch.cuda.set_device(local_rank)
|
|
deepspeed.init_distributed()
|
|
ds_config = generate_ds_config(args.bf16, 1 * world_size, args.nvme_offload_dir)
|
|
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
|
|
|
|
if args.picture and (args.cai_chat or args.chat):
|
|
import modules.bot_picture as bot_picture
|
|
|
|
def load_model(model_name):
|
|
print(f"Loading {model_name}...")
|
|
t0 = time.time()
|
|
|
|
# Default settings
|
|
if not (args.cpu or args.load_in_8bit or args.auto_devices or args.disk or args.gpu_memory is not None or args.cpu_memory is not None or args.deepspeed):
|
|
if Path(f"torch-dumps/{model_name}.pt").exists():
|
|
print("Loading in .pt format...")
|
|
model = torch.load(Path(f"torch-dumps/{model_name}.pt"))
|
|
elif model_name.lower().startswith(('gpt-neo', 'opt-', 'galactica')) and any(size in model_name.lower() for size in ('13b', '20b', '30b')):
|
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), device_map='auto', load_in_8bit=True)
|
|
else:
|
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if args.bf16 else torch.float16).cuda()
|
|
|
|
# DeepSpeed ZeRO-3
|
|
elif args.deepspeed:
|
|
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{model_name}"), torch_dtype=torch.bfloat16 if args.bf16 else torch.float16)
|
|
model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
|
|
model.module.eval() # Inference
|
|
print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
|
|
|
|
# Custom
|
|
else:
|
|
command = "AutoModelForCausalLM.from_pretrained"
|
|
params = ["low_cpu_mem_usage=True"]
|
|
if not args.cpu and not torch.cuda.is_available():
|
|
print("Warning: no GPU has been detected.\nFalling back to CPU mode.\n")
|
|
args.cpu = True
|
|
|
|
if args.cpu:
|
|
params.append("low_cpu_mem_usage=True")
|
|
params.append("torch_dtype=torch.float32")
|
|
else:
|
|
params.append("device_map='auto'")
|
|
params.append("load_in_8bit=True" if args.load_in_8bit else "torch_dtype=torch.bfloat16" if args.bf16 else "torch_dtype=torch.float16")
|
|
|
|
if args.gpu_memory:
|
|
params.append(f"max_memory={{0: '{args.gpu_memory or '99'}GiB', 'cpu': '{args.cpu_memory or '99'}GiB'}}")
|
|
elif not args.load_in_8bit:
|
|
total_mem = (torch.cuda.get_device_properties(0).total_memory/(1024*1024))
|
|
suggestion = round((total_mem-1000)/1000)*1000
|
|
if total_mem-suggestion < 800:
|
|
suggestion -= 1000
|
|
suggestion = int(round(suggestion/1000))
|
|
print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
|
|
params.append(f"max_memory={{0: '{suggestion}GiB', 'cpu': '{args.cpu_memory or '99'}GiB'}}")
|
|
if args.disk:
|
|
params.append(f"offload_folder='{args.disk_cache_dir or 'cache'}'")
|
|
|
|
command = f"{command}(Path(f'models/{model_name}'), {', '.join(set(params))})"
|
|
model = eval(command)
|
|
|
|
# Loading the tokenizer
|
|
if model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path(f"models/gpt-j-6B/").exists():
|
|
tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
|
|
else:
|
|
tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{model_name}/"))
|
|
tokenizer.truncation_side = 'left'
|
|
|
|
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
|
|
return model, tokenizer
|
|
|
|
def load_soft_prompt(name):
|
|
global soft_prompt, soft_prompt_tensor
|
|
|
|
if name == 'None':
|
|
soft_prompt = False
|
|
soft_prompt_tensor = None
|
|
else:
|
|
with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
|
|
zf.extract('tensor.npy')
|
|
tensor = np.load('tensor.npy')
|
|
tensor = torch.Tensor(tensor).to(device=model.device, dtype=model.dtype)
|
|
tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
|
|
|
|
soft_prompt = True
|
|
soft_prompt_tensor = tensor
|
|
|
|
return name
|
|
|
|
def upload_soft_prompt(file):
|
|
with zipfile.ZipFile(io.BytesIO(file)) as zf:
|
|
zf.extract('meta.json')
|
|
j = json.loads(open('meta.json', 'r').read())
|
|
name = j['name']
|
|
|
|
with open(Path(f'softprompts/{name}.zip'), 'wb') as f:
|
|
f.write(file)
|
|
|
|
return name
|
|
|
|
def load_model_wrapper(selected_model):
|
|
global model_name, model, tokenizer
|
|
|
|
if selected_model != model_name:
|
|
model_name = selected_model
|
|
model = tokenizer = None
|
|
if not args.cpu:
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
model, tokenizer = load_model(model_name)
|
|
|
|
return selected_model
|
|
|
|
def load_preset_values(preset_menu, return_dict=False):
|
|
generate_params = {
|
|
'do_sample': True,
|
|
'temperature': 1,
|
|
'top_p': 1,
|
|
'typical_p': 1,
|
|
'repetition_penalty': 1,
|
|
'top_k': 50,
|
|
'num_beams': 1,
|
|
'penalty_alpha': 0,
|
|
'min_length': 0,
|
|
'length_penalty': 1,
|
|
'no_repeat_ngram_size': 0,
|
|
'early_stopping': False,
|
|
}
|
|
with open(Path(f'presets/{preset_menu}.txt'), 'r') as infile:
|
|
preset = infile.read()
|
|
for i in preset.splitlines():
|
|
i = i.rstrip(',').strip().split('=')
|
|
if len(i) == 2 and i[0].strip() != 'tokens':
|
|
generate_params[i[0].strip()] = eval(i[1].strip())
|
|
|
|
generate_params['temperature'] = min(1.99, generate_params['temperature'])
|
|
|
|
if return_dict:
|
|
return generate_params
|
|
else:
|
|
return generate_params['do_sample'], generate_params['temperature'], generate_params['top_p'], generate_params['typical_p'], generate_params['repetition_penalty'], generate_params['top_k'], generate_params['min_length'], generate_params['no_repeat_ngram_size'], generate_params['num_beams'], generate_params['penalty_alpha'], generate_params['length_penalty'], generate_params['early_stopping']
|
|
|
|
# Removes empty replies from gpt4chan outputs
|
|
def fix_gpt4chan(s):
|
|
for i in range(10):
|
|
s = re.sub("--- [0-9]*\n>>[0-9]*\n---", "---", s)
|
|
s = re.sub("--- [0-9]*\n *\n---", "---", s)
|
|
s = re.sub("--- [0-9]*\n\n\n---", "---", s)
|
|
return s
|
|
|
|
# Fix the LaTeX equations in galactica
|
|
def fix_galactica(s):
|
|
s = s.replace(r'\[', r'$')
|
|
s = s.replace(r'\]', r'$')
|
|
s = s.replace(r'\(', r'$')
|
|
s = s.replace(r'\)', r'$')
|
|
s = s.replace(r'$$', r'$')
|
|
return s
|
|
|
|
def get_max_prompt_length(tokens):
|
|
global soft_prompt, soft_prompt_tensor
|
|
max_length = 2048-tokens
|
|
if soft_prompt:
|
|
max_length -= soft_prompt_tensor.shape[1]
|
|
return max_length
|
|
|
|
def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
|
|
input_ids = tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
|
|
if args.cpu:
|
|
return input_ids
|
|
elif args.deepspeed:
|
|
return input_ids.to(device=local_rank)
|
|
else:
|
|
return input_ids.cuda()
|
|
|
|
def decode(output_ids):
|
|
reply = tokenizer.decode(output_ids, skip_special_tokens=True)
|
|
reply = reply.replace(r'<|endoftext|>', '')
|
|
return reply
|
|
|
|
def formatted_outputs(reply, model_name):
|
|
if not (args.chat or args.cai_chat):
|
|
if model_name.lower().startswith('galactica'):
|
|
reply = fix_galactica(reply)
|
|
return reply, reply, generate_basic_html(reply)
|
|
elif model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')):
|
|
reply = fix_gpt4chan(reply)
|
|
return reply, 'Only applicable for GALACTICA models.', generate_4chan_html(reply)
|
|
else:
|
|
return reply, 'Only applicable for GALACTICA models.', generate_basic_html(reply)
|
|
else:
|
|
return reply
|
|
|
|
def generate_softprompt_input_tensors(input_ids):
|
|
inputs_embeds = model.transformer.wte(input_ids)
|
|
inputs_embeds = torch.cat((soft_prompt_tensor, inputs_embeds), dim=1)
|
|
filler_input_ids = torch.zeros((1, inputs_embeds.shape[1]), dtype=input_ids.dtype).to(model.device)
|
|
filler_input_ids += model.config.bos_token_id # setting dummy input_ids to bos tokens
|
|
return inputs_embeds, filler_input_ids
|
|
|
|
def generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=None, stopping_string=None):
|
|
global model_name, model, tokenizer, soft_prompt, soft_prompt_tensor
|
|
|
|
original_question = question
|
|
if not (args.chat or args.cai_chat):
|
|
question = apply_extensions(question, "input")
|
|
if args.verbose:
|
|
print(f"\n\n{question}\n--------------------\n")
|
|
|
|
input_ids = encode(question, tokens)
|
|
cuda = "" if (args.cpu or args.deepspeed) else ".cuda()"
|
|
n = tokenizer.eos_token_id if eos_token is None else tokenizer.encode(eos_token, return_tensors='pt')[0][-1]
|
|
if stopping_string is not None:
|
|
# The stopping_criteria code below was copied from
|
|
# https://github.com/PygmalionAI/gradio-ui/blob/master/src/model.py
|
|
t = encode(stopping_string, 0, add_special_tokens=False)
|
|
stopping_criteria_list = transformers.StoppingCriteriaList([
|
|
_SentinelTokenStoppingCriteria(
|
|
sentinel_token_ids=t,
|
|
starting_idx=len(input_ids[0])
|
|
)
|
|
])
|
|
else:
|
|
stopping_criteria_list = None
|
|
|
|
generate_params = [
|
|
f"eos_token_id={n}",
|
|
f"stopping_criteria=stopping_criteria_list",
|
|
f"do_sample={do_sample}",
|
|
f"temperature={temperature}",
|
|
f"top_p={top_p}",
|
|
f"typical_p={typical_p}",
|
|
f"repetition_penalty={repetition_penalty}",
|
|
f"top_k={top_k}",
|
|
f"min_length={min_length if args.no_stream else 0}",
|
|
f"no_repeat_ngram_size={no_repeat_ngram_size}",
|
|
f"num_beams={num_beams}",
|
|
f"penalty_alpha={penalty_alpha}",
|
|
f"length_penalty={length_penalty}",
|
|
f"early_stopping={early_stopping}",
|
|
]
|
|
|
|
if args.deepspeed:
|
|
generate_params.append("synced_gpus=True")
|
|
if args.no_stream:
|
|
generate_params.append(f"max_new_tokens=tokens")
|
|
else:
|
|
generate_params.append(f"max_new_tokens=8")
|
|
|
|
if soft_prompt:
|
|
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
|
|
generate_params.insert(0, "inputs_embeds=inputs_embeds")
|
|
generate_params.insert(0, "filler_input_ids")
|
|
else:
|
|
generate_params.insert(0, "input_ids")
|
|
|
|
# Generate the entire reply at once
|
|
if args.no_stream:
|
|
t0 = time.time()
|
|
with torch.no_grad():
|
|
output = eval(f"model.generate({', '.join(generate_params)}){cuda}")[0]
|
|
if soft_prompt:
|
|
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
|
|
|
reply = decode(output)
|
|
if not (args.chat or args.cai_chat):
|
|
reply = original_question + apply_extensions(reply[len(question):], "output")
|
|
yield formatted_outputs(reply, model_name)
|
|
|
|
t1 = time.time()
|
|
print(f"Output generated in {(t1-t0):.2f} seconds ({(len(output)-len(input_ids[0]))/(t1-t0)/8:.2f} it/s, {len(output)-len(input_ids[0])} tokens)")
|
|
|
|
# Generate the reply 1 token at a time
|
|
else:
|
|
yield formatted_outputs(original_question, model_name)
|
|
for i in tqdm(range(tokens//8+1)):
|
|
with torch.no_grad():
|
|
output = eval(f"model.generate({', '.join(generate_params)}){cuda}")[0]
|
|
if soft_prompt:
|
|
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
|
|
|
|
reply = decode(output)
|
|
if not (args.chat or args.cai_chat):
|
|
reply = original_question + apply_extensions(reply[len(question):], "output")
|
|
yield formatted_outputs(reply, model_name)
|
|
|
|
input_ids = torch.reshape(output, (1, output.shape[0]))
|
|
if soft_prompt:
|
|
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
|
|
|
|
if output[-1] == n:
|
|
break
|
|
|
|
def apply_extensions(text, typ):
|
|
global available_extensions, extension_state
|
|
for ext in sorted(extension_state, key=lambda x : extension_state[x][1]):
|
|
if extension_state[ext][0] == True:
|
|
ext_string = f"extensions.{ext}.script"
|
|
if typ == "input" and hasattr(eval(ext_string), "input_modifier"):
|
|
text = eval(f"{ext_string}.input_modifier(text)")
|
|
elif typ == "output" and hasattr(eval(ext_string), "output_modifier"):
|
|
text = eval(f"{ext_string}.output_modifier(text)")
|
|
elif typ == "bot_prefix" and hasattr(eval(ext_string), "bot_prefix_modifier"):
|
|
text = eval(f"{ext_string}.bot_prefix_modifier(text)")
|
|
return text
|
|
|
|
def update_extensions_parameters(*kwargs):
|
|
i = 0
|
|
for ext in sorted(extension_state, key=lambda x : extension_state[x][1]):
|
|
if extension_state[ext][0] == True:
|
|
params = eval(f"extensions.{ext}.script.params")
|
|
for param in params:
|
|
if len(kwargs) >= i+1:
|
|
params[param] = eval(f"kwargs[{i}]")
|
|
i += 1
|
|
|
|
def get_available_models():
|
|
return sorted(set([item.replace('.pt', '') for item in map(lambda x : str(x.name), list(Path('models/').glob('*'))+list(Path('torch-dumps/').glob('*'))) if not item.endswith('.txt')]), key=str.lower)
|
|
|
|
def get_available_presets():
|
|
return sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('presets').glob('*.txt'))), key=str.lower)
|
|
|
|
def get_available_characters():
|
|
return ["None"] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('characters').glob('*.json'))), key=str.lower)
|
|
|
|
def get_available_extensions():
|
|
return sorted(set(map(lambda x : x.parts[1], Path('extensions').glob('*/script.py'))), key=str.lower)
|
|
|
|
def get_available_softprompts():
|
|
return ["None"] + sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('softprompts').glob('*.zip'))), key=str.lower)
|
|
|
|
def create_extensions_block():
|
|
extensions_ui_elements = []
|
|
default_values = []
|
|
gr.Markdown('## Extensions parameters')
|
|
for ext in sorted(extension_state, key=lambda x : extension_state[x][1]):
|
|
if extension_state[ext][0] == True:
|
|
params = eval(f"extensions.{ext}.script.params")
|
|
for param in params:
|
|
_id = f"{ext}-{param}"
|
|
default_value = settings[_id] if _id in settings else params[param]
|
|
default_values.append(default_value)
|
|
if type(params[param]) == str:
|
|
extensions_ui_elements.append(gr.Textbox(value=default_value, label=f"{ext}-{param}"))
|
|
elif type(params[param]) in [int, float]:
|
|
extensions_ui_elements.append(gr.Number(value=default_value, label=f"{ext}-{param}"))
|
|
elif type(params[param]) == bool:
|
|
extensions_ui_elements.append(gr.Checkbox(value=default_value, label=f"{ext}-{param}"))
|
|
|
|
update_extensions_parameters(*default_values)
|
|
btn_extensions = gr.Button("Apply")
|
|
btn_extensions.click(update_extensions_parameters, [*extensions_ui_elements], [])
|
|
|
|
def create_settings_menus():
|
|
generate_params = load_preset_values(settings[f'preset{suffix}'], return_dict=True)
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
with gr.Row():
|
|
model_menu = gr.Dropdown(choices=available_models, value=model_name, label='Model')
|
|
create_refresh_button(model_menu, lambda : None, lambda : {"choices": get_available_models()}, "refresh-button")
|
|
with gr.Column():
|
|
with gr.Row():
|
|
preset_menu = gr.Dropdown(choices=available_presets, value=settings[f'preset{suffix}'], label='Generation parameters preset')
|
|
create_refresh_button(preset_menu, lambda : None, lambda : {"choices": get_available_presets()}, "refresh-button")
|
|
|
|
with gr.Accordion("Custom generation parameters", open=False):
|
|
with gr.Row():
|
|
with gr.Column():
|
|
do_sample = gr.Checkbox(value=generate_params['do_sample'], label="do_sample")
|
|
temperature = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label="temperature")
|
|
top_p = gr.Slider(0.0,1.0,value=generate_params['top_p'],step=0.01,label="top_p")
|
|
typical_p = gr.Slider(0.0,1.0,value=generate_params['typical_p'],step=0.01,label="typical_p")
|
|
with gr.Column():
|
|
repetition_penalty = gr.Slider(1.0,4.99,value=generate_params['repetition_penalty'],step=0.01,label="repetition_penalty")
|
|
top_k = gr.Slider(0,200,value=generate_params['top_k'],step=1,label="top_k")
|
|
no_repeat_ngram_size = gr.Slider(0, 20, step=1, value=generate_params["no_repeat_ngram_size"], label="no_repeat_ngram_size")
|
|
penalty_alpha = gr.Slider(0, 5, value=generate_params["penalty_alpha"], label="penalty_alpha")
|
|
|
|
gr.Markdown("Special parameters (only use them if you really need them):")
|
|
with gr.Row():
|
|
with gr.Column():
|
|
num_beams = gr.Slider(0, 20, step=1, value=generate_params["num_beams"], label="num_beams")
|
|
length_penalty = gr.Slider(-5, 5, value=generate_params["length_penalty"], label="length_penalty")
|
|
with gr.Column():
|
|
min_length = gr.Slider(0, 2000, step=1, value=generate_params["min_length"] if args.no_stream else 0, label="min_length", interactive=args.no_stream)
|
|
early_stopping = gr.Checkbox(value=generate_params["early_stopping"], label="early_stopping")
|
|
|
|
with gr.Accordion("Soft prompt", open=False):
|
|
with gr.Row():
|
|
softprompts_menu = gr.Dropdown(choices=available_softprompts, value="None", label='Soft prompt')
|
|
create_refresh_button(softprompts_menu, lambda : None, lambda : {"choices": get_available_softprompts()}, "refresh-button")
|
|
|
|
gr.Markdown('Upload a soft prompt (.zip format):')
|
|
with gr.Row():
|
|
upload_softprompt = gr.File(type='binary')
|
|
|
|
model_menu.change(load_model_wrapper, [model_menu], [model_menu], show_progress=True)
|
|
preset_menu.change(load_preset_values, [preset_menu], [do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping])
|
|
softprompts_menu.change(load_soft_prompt, [softprompts_menu], [softprompts_menu], show_progress=True)
|
|
upload_softprompt.upload(upload_soft_prompt, [upload_softprompt], [softprompts_menu])
|
|
return preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping
|
|
|
|
# This gets the new line characters right.
|
|
def clean_chat_message(text):
|
|
text = text.replace('\n', '\n\n')
|
|
text = re.sub(r"\n{3,}", "\n\n", text)
|
|
text = text.strip()
|
|
return text
|
|
|
|
def generate_chat_prompt(text, tokens, name1, name2, context, history_size, impersonate=False):
|
|
text = clean_chat_message(text)
|
|
|
|
rows = [f"{context.strip()}\n"]
|
|
i = len(history['internal'])-1
|
|
count = 0
|
|
max_length = get_max_prompt_length(tokens)
|
|
while i >= 0 and len(encode(''.join(rows), tokens)[0]) < max_length:
|
|
rows.insert(1, f"{name2}: {history['internal'][i][1].strip()}\n")
|
|
count += 1
|
|
if not (history['internal'][i][0] == '<|BEGIN-VISIBLE-CHAT|>'):
|
|
rows.insert(1, f"{name1}: {history['internal'][i][0].strip()}\n")
|
|
count += 1
|
|
i -= 1
|
|
if history_size != 0 and count >= history_size:
|
|
break
|
|
|
|
if not impersonate:
|
|
rows.append(f"{name1}: {text}\n")
|
|
rows.append(apply_extensions(f"{name2}:", "bot_prefix"))
|
|
limit = 3
|
|
else:
|
|
rows.append(f"{name1}:")
|
|
limit = 2
|
|
|
|
while len(rows) > limit and len(encode(''.join(rows), tokens)[0]) >= max_length:
|
|
rows.pop(1)
|
|
rows.pop(1)
|
|
|
|
question = ''.join(rows)
|
|
return question
|
|
|
|
def extract_message_from_reply(question, reply, current, other, check, extensions=False):
|
|
next_character_found = False
|
|
substring_found = False
|
|
|
|
previous_idx = [m.start() for m in re.finditer(f"(^|\n){current}:", question)]
|
|
idx = [m.start() for m in re.finditer(f"(^|\n){current}:", reply)]
|
|
idx = idx[len(previous_idx)-1]
|
|
|
|
if extensions:
|
|
reply = reply[idx + 1 + len(apply_extensions(f"{current}:", "bot_prefix")):]
|
|
else:
|
|
reply = reply[idx + 1 + len(f"{current}:"):]
|
|
|
|
if check:
|
|
reply = reply.split('\n')[0].strip()
|
|
else:
|
|
idx = reply.find(f"\n{other}:")
|
|
if idx != -1:
|
|
reply = reply[:idx]
|
|
next_character_found = True
|
|
reply = clean_chat_message(reply)
|
|
|
|
# Detect if something like "\nYo" is generated just before
|
|
# "\nYou:" is completed
|
|
tmp = f"\n{other}:"
|
|
for j in range(1, len(tmp)):
|
|
if reply[-j:] == tmp[:j]:
|
|
substring_found = True
|
|
|
|
return reply, next_character_found, substring_found
|
|
|
|
def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture=None):
|
|
if args.picture and picture is not None:
|
|
text, visible_text = generate_chat_picture(picture, name1, name2)
|
|
else:
|
|
visible_text = text
|
|
|
|
text = apply_extensions(text, "input")
|
|
question = generate_chat_prompt(text, tokens, name1, name2, context, history_size)
|
|
history['internal'].append(['', ''])
|
|
history['visible'].append(['', ''])
|
|
eos_token = '\n' if check else None
|
|
for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):
|
|
reply, next_character_found, substring_found = extract_message_from_reply(question, reply, name2, name1, check, extensions=True)
|
|
history['internal'][-1] = [text, reply]
|
|
history['visible'][-1] = [visible_text, apply_extensions(reply, "output")]
|
|
if not substring_found:
|
|
yield history['visible']
|
|
if next_character_found:
|
|
break
|
|
yield history['visible']
|
|
|
|
def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture=None):
|
|
question = generate_chat_prompt(text, tokens, name1, name2, context, history_size, impersonate=True)
|
|
eos_token = '\n' if check else None
|
|
for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
|
|
reply, next_character_found, substring_found = extract_message_from_reply(question, reply, name1, name2, check, extensions=False)
|
|
if not substring_found:
|
|
yield apply_extensions(reply, "output")
|
|
if next_character_found:
|
|
break
|
|
yield apply_extensions(reply, "output")
|
|
|
|
def cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture=None):
|
|
for _history in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
|
yield generate_chat_html(_history, name1, name2, character)
|
|
|
|
def regenerate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture=None):
|
|
last = history['visible'].pop()
|
|
history['internal'].pop()
|
|
text = last[0]
|
|
if args.cai_chat:
|
|
for i in cai_chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
|
yield i
|
|
else:
|
|
for i in chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size, picture):
|
|
yield i
|
|
|
|
def remove_last_message(name1, name2):
|
|
if not history['internal'][-1][0] == '<|BEGIN-VISIBLE-CHAT|>':
|
|
last = history['visible'].pop()
|
|
history['internal'].pop()
|
|
else:
|
|
last = ['', '']
|
|
if args.cai_chat:
|
|
return generate_chat_html(history['visible'], name1, name2, character), last[0]
|
|
else:
|
|
return history['visible'], last[0]
|
|
|
|
def send_last_reply_to_input():
|
|
if len(history['internal']) > 0:
|
|
return history['internal'][-1][1]
|
|
else:
|
|
return ''
|
|
|
|
def replace_last_reply(text, name1, name2):
|
|
if len(history['visible']) > 0:
|
|
if args.cai_chat:
|
|
history['visible'][-1][1] = text
|
|
else:
|
|
history['visible'][-1] = (history['visible'][-1][0], text)
|
|
history['internal'][-1][1] = apply_extensions(text, "input")
|
|
|
|
if args.cai_chat:
|
|
return generate_chat_html(history['visible'], name1, name2, character)
|
|
else:
|
|
return history['visible']
|
|
|
|
def clear_html():
|
|
return generate_chat_html([], "", "", character)
|
|
|
|
def clear_chat_log(_character, name1, name2):
|
|
global history
|
|
if _character != 'None':
|
|
for i in range(len(history['internal'])):
|
|
if '<|BEGIN-VISIBLE-CHAT|>' in history['internal'][i][0]:
|
|
history['visible'] = [['', history['internal'][i][1]]]
|
|
history['internal'] = history['internal'][:i+1]
|
|
break
|
|
else:
|
|
history['internal'] = []
|
|
history['visible'] = []
|
|
if args.cai_chat:
|
|
return generate_chat_html(history['visible'], name1, name2, character)
|
|
else:
|
|
return history['visible']
|
|
|
|
def redraw_html(name1, name2):
|
|
global history
|
|
return generate_chat_html(history['visible'], name1, name2, character)
|
|
|
|
def tokenize_dialogue(dialogue, name1, name2):
|
|
_history = []
|
|
|
|
dialogue = re.sub('<START>', '', dialogue)
|
|
dialogue = re.sub('<start>', '', dialogue)
|
|
dialogue = re.sub('(\n|^)[Aa]non:', '\\1You:', dialogue)
|
|
dialogue = re.sub('(\n|^)\[CHARACTER\]:', f'\\g<1>{name2}:', dialogue)
|
|
idx = [m.start() for m in re.finditer(f"(^|\n)({name1}|{name2}):", dialogue)]
|
|
if len(idx) == 0:
|
|
return _history
|
|
|
|
messages = []
|
|
for i in range(len(idx)-1):
|
|
messages.append(dialogue[idx[i]:idx[i+1]].strip())
|
|
messages.append(dialogue[idx[-1]:].strip())
|
|
|
|
entry = ['', '']
|
|
for i in messages:
|
|
if i.startswith(f'{name1}:'):
|
|
entry[0] = i[len(f'{name1}:'):].strip()
|
|
elif i.startswith(f'{name2}:'):
|
|
entry[1] = i[len(f'{name2}:'):].strip()
|
|
if not (len(entry[0]) == 0 and len(entry[1]) == 0):
|
|
_history.append(entry)
|
|
entry = ['', '']
|
|
|
|
print(f"\033[1;32;1m\nDialogue tokenized to:\033[0;37;0m\n", end='')
|
|
for row in _history:
|
|
for column in row:
|
|
print("\n")
|
|
for line in column.strip().split('\n'):
|
|
print("| "+line+"\n")
|
|
print("|\n")
|
|
print("------------------------------")
|
|
|
|
return _history
|
|
|
|
def save_history():
|
|
fname = f"{character or ''}{'_' if character else ''}{datetime.now().strftime('%Y%m%d-%H%M%S')}.json"
|
|
if not Path('logs').exists():
|
|
Path('logs').mkdir()
|
|
with open(Path(f'logs/{fname}'), 'w') as f:
|
|
f.write(json.dumps({'data': history['internal'], 'data_visible': history['visible']}))
|
|
return Path(f'logs/{fname}')
|
|
|
|
def load_history(file, name1, name2):
|
|
global history
|
|
file = file.decode('utf-8')
|
|
try:
|
|
j = json.loads(file)
|
|
if 'data' in j:
|
|
history['internal'] = j['data']
|
|
if 'data_visible' in j:
|
|
history['visible'] = j['data_visible']
|
|
else:
|
|
history['visible'] = copy.deepcopy(history['internal'])
|
|
# Compatibility with Pygmalion AI's official web UI
|
|
elif 'chat' in j:
|
|
history['internal'] = [':'.join(x.split(':')[1:]).strip() for x in j['chat']]
|
|
if len(j['chat']) > 0 and j['chat'][0].startswith(f'{name2}:'):
|
|
history['internal'] = [['<|BEGIN-VISIBLE-CHAT|>', history['internal'][0]]] + [[history['internal'][i], history['internal'][i+1]] for i in range(1, len(history['internal'])-1, 2)]
|
|
history['visible'] = copy.deepcopy(history['internal'])
|
|
history['visible'][0][0] = ''
|
|
else:
|
|
history['internal'] = [[history['internal'][i], history['internal'][i+1]] for i in range(0, len(history['internal'])-1, 2)]
|
|
history['visible'] = copy.deepcopy(history['internal'])
|
|
except:
|
|
history['internal'] = tokenize_dialogue(file, name1, name2)
|
|
history['visible'] = copy.deepcopy(history['internal'])
|
|
|
|
def load_character(_character, name1, name2):
|
|
global history, character
|
|
context = ""
|
|
history['internal'] = []
|
|
history['visible'] = []
|
|
if _character != 'None':
|
|
character = _character
|
|
data = json.loads(open(Path(f'characters/{_character}.json'), 'r').read())
|
|
name2 = data['char_name']
|
|
if 'char_persona' in data and data['char_persona'] != '':
|
|
context += f"{data['char_name']}'s Persona: {data['char_persona']}\n"
|
|
if 'world_scenario' in data and data['world_scenario'] != '':
|
|
context += f"Scenario: {data['world_scenario']}\n"
|
|
context = f"{context.strip()}\n<START>\n"
|
|
if 'example_dialogue' in data and data['example_dialogue'] != '':
|
|
history['internal'] = tokenize_dialogue(data['example_dialogue'], name1, name2)
|
|
if 'char_greeting' in data and len(data['char_greeting'].strip()) > 0:
|
|
history['internal'] += [['<|BEGIN-VISIBLE-CHAT|>', data['char_greeting']]]
|
|
history['visible'] += [['', apply_extensions(data['char_greeting'], "output")]]
|
|
else:
|
|
history['internal'] += [['<|BEGIN-VISIBLE-CHAT|>', "Hello there!"]]
|
|
history['visible'] += [['', "Hello there!"]]
|
|
else:
|
|
character = None
|
|
context = settings['context_pygmalion']
|
|
name2 = settings['name2_pygmalion']
|
|
|
|
if args.cai_chat:
|
|
return name2, context, generate_chat_html(history['visible'], name1, name2, character)
|
|
else:
|
|
return name2, context, history['visible']
|
|
|
|
def upload_character(json_file, img, tavern=False):
|
|
json_file = json_file if type(json_file) == str else json_file.decode('utf-8')
|
|
data = json.loads(json_file)
|
|
outfile_name = data["char_name"]
|
|
i = 1
|
|
while Path(f'characters/{outfile_name}.json').exists():
|
|
outfile_name = f'{data["char_name"]}_{i:03d}'
|
|
i += 1
|
|
if tavern:
|
|
outfile_name = f'TavernAI-{outfile_name}'
|
|
with open(Path(f'characters/{outfile_name}.json'), 'w') as f:
|
|
f.write(json_file)
|
|
if img is not None:
|
|
img = Image.open(io.BytesIO(img))
|
|
img.save(Path(f'characters/{outfile_name}.png'))
|
|
print(f'New character saved to "characters/{outfile_name}.json".')
|
|
return outfile_name
|
|
|
|
def upload_tavern_character(img, name1, name2):
|
|
_img = Image.open(io.BytesIO(img))
|
|
_img.getexif()
|
|
decoded_string = base64.b64decode(_img.info['chara'])
|
|
_json = json.loads(decoded_string)
|
|
_json = {"char_name": _json['name'], "char_persona": _json['description'], "char_greeting": _json["first_mes"], "example_dialogue": _json['mes_example'], "world_scenario": _json['scenario']}
|
|
_json['example_dialogue'] = _json['example_dialogue'].replace('{{user}}', name1).replace('{{char}}', _json['char_name'])
|
|
return upload_character(json.dumps(_json), img, tavern=True)
|
|
|
|
def upload_your_profile_picture(img):
|
|
img = Image.open(io.BytesIO(img))
|
|
img.save(Path(f'img_me.png'))
|
|
print(f'Profile picture saved to "img_me.png"')
|
|
|
|
def generate_chat_picture(picture, name1, name2):
|
|
text = f'*{name1} sends {name2} a picture that contains the following: "{bot_picture.caption_image(picture)}"*'
|
|
buffer = BytesIO()
|
|
picture.save(buffer, format="JPEG")
|
|
img_str = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
|
visible_text = f'<img src="data:image/jpeg;base64,{img_str}">'
|
|
return text, visible_text
|
|
|
|
# Global variables
|
|
available_models = get_available_models()
|
|
available_presets = get_available_presets()
|
|
available_characters = get_available_characters()
|
|
available_extensions = get_available_extensions()
|
|
available_softprompts = get_available_softprompts()
|
|
extension_state = {}
|
|
if args.extensions is not None:
|
|
for i,ext in enumerate(args.extensions.split(',')):
|
|
if ext in available_extensions:
|
|
print(f'Loading the extension "{ext}"... ', end='')
|
|
ext_string = f"extensions.{ext}.script"
|
|
exec(f"import {ext_string}")
|
|
extension_state[ext] = [True, i]
|
|
print(f'Ok.')
|
|
|
|
# Choosing the default model
|
|
if args.model is not None:
|
|
model_name = args.model
|
|
else:
|
|
if len(available_models) == 0:
|
|
print("No models are available! Please download at least one.")
|
|
sys.exit(0)
|
|
elif len(available_models) == 1:
|
|
i = 0
|
|
else:
|
|
print("The following models are available:\n")
|
|
for i,model in enumerate(available_models):
|
|
print(f"{i+1}. {model}")
|
|
print(f"\nWhich one do you want to load? 1-{len(available_models)}\n")
|
|
i = int(input())-1
|
|
print()
|
|
model_name = available_models[i]
|
|
model, tokenizer = load_model(model_name)
|
|
loaded_preset = soft_prompt_tensor = None
|
|
soft_prompt = False
|
|
|
|
# UI settings
|
|
if model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')):
|
|
default_text = settings['prompt_gpt4chan']
|
|
elif re.match('(rosey|chip|joi)_.*_instruct.*', model_name.lower()) is not None:
|
|
default_text = 'User: \n'
|
|
else:
|
|
default_text = settings['prompt']
|
|
description = f"\n\n# Text generation lab\nGenerate text using Large Language Models.\n"
|
|
css = ".my-4 {margin-top: 0} .py-6 {padding-top: 2.5rem} #refresh-button {flex: none; margin: 0; padding: 0; min-width: 50px; border: none; box-shadow: none; border-radius: 0} #download-label, #upload-label {min-height: 0}"
|
|
suffix = '_pygmalion' if 'pygmalion' in model_name.lower() else ''
|
|
buttons = {}
|
|
gen_events = []
|
|
history = {'internal': [], 'visible': []}
|
|
character = None
|
|
|
|
if args.chat or args.cai_chat:
|
|
with gr.Blocks(css=css+".h-\[40vh\] {height: 66.67vh} .gradio-container {max-width: 800px; margin-left: auto; margin-right: auto} .w-screen {width: unset}", analytics_enabled=False) as interface:
|
|
if args.cai_chat:
|
|
display = gr.HTML(value=generate_chat_html([], "", "", character))
|
|
else:
|
|
display = gr.Chatbot()
|
|
textbox = gr.Textbox(label='Input')
|
|
with gr.Row():
|
|
buttons["Stop"] = gr.Button("Stop")
|
|
buttons["Generate"] = gr.Button("Generate")
|
|
buttons["Regenerate"] = gr.Button("Regenerate")
|
|
with gr.Row():
|
|
buttons["Impersonate"] = gr.Button("Impersonate")
|
|
buttons["Remove last"] = gr.Button("Remove last")
|
|
buttons["Clear"] = gr.Button("Clear history")
|
|
with gr.Row():
|
|
buttons["Send last reply to input"] = gr.Button("Send last reply to input")
|
|
buttons["Replace last reply"] = gr.Button("Replace last reply")
|
|
if args.picture:
|
|
with gr.Row():
|
|
picture_select = gr.Image(label="Send a picture", type='pil')
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
max_new_tokens = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
|
|
with gr.Column():
|
|
history_size_slider = gr.Slider(minimum=settings['history_size_min'], maximum=settings['history_size_max'], step=1, label='Chat history size in prompt (0 for no limit)', value=settings['history_size'])
|
|
|
|
preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping = create_settings_menus()
|
|
|
|
name1 = gr.Textbox(value=settings[f'name1{suffix}'], lines=1, label='Your name')
|
|
name2 = gr.Textbox(value=settings[f'name2{suffix}'], lines=1, label='Bot\'s name')
|
|
context = gr.Textbox(value=settings[f'context{suffix}'], lines=2, label='Context')
|
|
with gr.Row():
|
|
character_menu = gr.Dropdown(choices=available_characters, value="None", label='Character')
|
|
create_refresh_button(character_menu, lambda : None, lambda : {"choices": get_available_characters()}, "refresh-button")
|
|
|
|
with gr.Row():
|
|
check = gr.Checkbox(value=settings[f'stop_at_newline{suffix}'], label='Stop generating at new line character?')
|
|
with gr.Row():
|
|
with gr.Tab('Chat history'):
|
|
with gr.Row():
|
|
with gr.Column():
|
|
gr.Markdown('Upload')
|
|
upload = gr.File(type='binary')
|
|
with gr.Column():
|
|
gr.Markdown('Download')
|
|
download = gr.File()
|
|
buttons["Download"] = gr.Button(value="Click me")
|
|
with gr.Tab('Upload character'):
|
|
with gr.Row():
|
|
with gr.Column():
|
|
gr.Markdown('1. Select the JSON file')
|
|
upload_char = gr.File(type='binary')
|
|
with gr.Column():
|
|
gr.Markdown('2. Select your character\'s profile picture (optional)')
|
|
upload_img = gr.File(type='binary')
|
|
buttons["Upload character"] = gr.Button(value="Submit")
|
|
with gr.Tab('Upload your profile picture'):
|
|
upload_img_me = gr.File(type='binary')
|
|
with gr.Tab('Upload TavernAI Character Card'):
|
|
upload_img_tavern = gr.File(type='binary')
|
|
|
|
if args.extensions is not None:
|
|
create_extensions_block()
|
|
|
|
input_params = [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, history_size_slider]
|
|
if args.picture:
|
|
input_params.append(picture_select)
|
|
if args.cai_chat:
|
|
gen_events.append(buttons["Generate"].click(cai_chatbot_wrapper, input_params, display, show_progress=args.no_stream, api_name="textgen"))
|
|
gen_events.append(textbox.submit(cai_chatbot_wrapper, input_params, display, show_progress=args.no_stream))
|
|
if args.picture:
|
|
picture_select.upload(cai_chatbot_wrapper, input_params, display, show_progress=args.no_stream)
|
|
else:
|
|
gen_events.append(buttons["Generate"].click(chatbot_wrapper, input_params, display, show_progress=args.no_stream, api_name="textgen"))
|
|
gen_events.append(textbox.submit(chatbot_wrapper, input_params, display, show_progress=args.no_stream))
|
|
if args.picture:
|
|
picture_select.upload(chatbot_wrapper, input_params, display, show_progress=args.no_stream)
|
|
gen_events.append(buttons["Regenerate"].click(regenerate_wrapper, input_params, display, show_progress=args.no_stream))
|
|
gen_events.append(buttons["Impersonate"].click(impersonate_wrapper, input_params, textbox, show_progress=args.no_stream))
|
|
|
|
buttons["Send last reply to input"].click(send_last_reply_to_input, [], textbox, show_progress=args.no_stream)
|
|
buttons["Replace last reply"].click(replace_last_reply, [textbox, name1, name2], display, show_progress=args.no_stream)
|
|
buttons["Clear"].click(clear_chat_log, [character_menu, name1, name2], display)
|
|
buttons["Remove last"].click(remove_last_message, [name1, name2], [display, textbox], show_progress=False)
|
|
buttons["Stop"].click(None, None, None, cancels=gen_events)
|
|
buttons["Download"].click(save_history, inputs=[], outputs=[download])
|
|
buttons["Upload character"].click(upload_character, [upload_char, upload_img], [character_menu])
|
|
for i in ["Generate", "Regenerate", "Replace last reply"]:
|
|
buttons[i].click(lambda x: "", textbox, textbox, show_progress=False)
|
|
|
|
textbox.submit(lambda x: "", textbox, textbox, show_progress=False)
|
|
character_menu.change(load_character, [character_menu, name1, name2], [name2, context, display])
|
|
upload_img_tavern.upload(upload_tavern_character, [upload_img_tavern, name1, name2], [character_menu])
|
|
upload.upload(load_history, [upload, name1, name2], [])
|
|
upload_img_me.upload(upload_your_profile_picture, [upload_img_me], [])
|
|
if args.picture:
|
|
picture_select.upload(lambda : None, [], [picture_select], show_progress=False)
|
|
|
|
if args.cai_chat:
|
|
upload.upload(redraw_html, [name1, name2], [display])
|
|
upload_img_me.upload(redraw_html, [name1, name2], [display])
|
|
else:
|
|
upload.upload(lambda : history['visible'], [], [display])
|
|
upload_img_me.upload(lambda : history['visible'], [], [display])
|
|
|
|
elif args.notebook:
|
|
with gr.Blocks(css=css, analytics_enabled=False) as interface:
|
|
gr.Markdown(description)
|
|
with gr.Tab('Raw'):
|
|
textbox = gr.Textbox(value=default_text, lines=23)
|
|
with gr.Tab('Markdown'):
|
|
markdown = gr.Markdown()
|
|
with gr.Tab('HTML'):
|
|
html = gr.HTML()
|
|
|
|
buttons["Generate"] = gr.Button("Generate")
|
|
buttons["Stop"] = gr.Button("Stop")
|
|
|
|
max_new_tokens = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
|
|
|
|
preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping = create_settings_menus()
|
|
|
|
if args.extensions is not None:
|
|
create_extensions_block()
|
|
|
|
gen_events.append(buttons["Generate"].click(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [textbox, markdown, html], show_progress=args.no_stream, api_name="textgen"))
|
|
gen_events.append(textbox.submit(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [textbox, markdown, html], show_progress=args.no_stream))
|
|
buttons["Stop"].click(None, None, None, cancels=gen_events)
|
|
|
|
else:
|
|
with gr.Blocks(css=css, analytics_enabled=False) as interface:
|
|
gr.Markdown(description)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
textbox = gr.Textbox(value=default_text, lines=15, label='Input')
|
|
max_new_tokens = gr.Slider(minimum=settings['max_new_tokens_min'], maximum=settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=settings['max_new_tokens'])
|
|
buttons["Generate"] = gr.Button("Generate")
|
|
with gr.Row():
|
|
with gr.Column():
|
|
buttons["Continue"] = gr.Button("Continue")
|
|
with gr.Column():
|
|
buttons["Stop"] = gr.Button("Stop")
|
|
|
|
preset_menu, do_sample, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping = create_settings_menus()
|
|
if args.extensions is not None:
|
|
create_extensions_block()
|
|
|
|
with gr.Column():
|
|
with gr.Tab('Raw'):
|
|
output_textbox = gr.Textbox(lines=15, label='Output')
|
|
with gr.Tab('Markdown'):
|
|
markdown = gr.Markdown()
|
|
with gr.Tab('HTML'):
|
|
html = gr.HTML()
|
|
|
|
gen_events.append(buttons["Generate"].click(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [output_textbox, markdown, html], show_progress=args.no_stream, api_name="textgen"))
|
|
gen_events.append(textbox.submit(generate_reply, [textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [output_textbox, markdown, html], show_progress=args.no_stream))
|
|
gen_events.append(buttons["Continue"].click(generate_reply, [output_textbox, max_new_tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping], [output_textbox, markdown, html], show_progress=args.no_stream))
|
|
buttons["Stop"].click(None, None, None, cancels=gen_events)
|
|
|
|
interface.queue()
|
|
if args.listen:
|
|
interface.launch(prevent_thread_lock=True, share=args.share, server_name="0.0.0.0", server_port=args.listen_port)
|
|
else:
|
|
interface.launch(prevent_thread_lock=True, share=args.share, server_port=args.listen_port)
|
|
|
|
# I think that I will need this later
|
|
while True:
|
|
time.sleep(0.5)
|