mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-10-01 01:26:03 -04:00
224 lines
12 KiB
Python
224 lines
12 KiB
Python
import argparse
|
|
import logging
|
|
from collections import OrderedDict
|
|
from pathlib import Path
|
|
|
|
import yaml
|
|
|
|
model = None
|
|
tokenizer = None
|
|
model_name = "None"
|
|
model_type = None
|
|
lora_names = []
|
|
soft_prompt_tensor = None
|
|
soft_prompt = False
|
|
|
|
# Chat variables
|
|
history = {'internal': [], 'visible': []}
|
|
character = 'None'
|
|
stop_everything = False
|
|
processing_message = '*Is typing...*'
|
|
|
|
# UI elements (buttons, sliders, HTML, etc)
|
|
gradio = {}
|
|
|
|
# For keeping the values of UI elements on page reload
|
|
persistent_interface_state = {}
|
|
|
|
input_params = [] # Generation input parameters
|
|
reload_inputs = [] # Parameters for reloading the chat interface
|
|
|
|
# For restarting the interface
|
|
need_restart = False
|
|
|
|
settings = {
|
|
'autoload_model': True,
|
|
'max_new_tokens': 200,
|
|
'max_new_tokens_min': 1,
|
|
'max_new_tokens_max': 2000,
|
|
'seed': -1,
|
|
'character': 'None',
|
|
'name1': 'You',
|
|
'name2': 'Assistant',
|
|
'context': 'This is a conversation with your Assistant. The Assistant is very helpful and is eager to chat with you and answer your questions.',
|
|
'greeting': '',
|
|
'turn_template': '',
|
|
'custom_stopping_strings': '',
|
|
'stop_at_newline': False,
|
|
'add_bos_token': True,
|
|
'ban_eos_token': False,
|
|
'skip_special_tokens': True,
|
|
'truncation_length': 2048,
|
|
'truncation_length_min': 0,
|
|
'truncation_length_max': 8192,
|
|
'mode': 'chat',
|
|
'chat_style': 'cai-chat',
|
|
'instruction_template': 'None',
|
|
'chat-instruct_command': 'Continue the chat dialogue below. Write a single reply for the character "<|character|>".\n\n<|prompt|>',
|
|
'chat_prompt_size': 2048,
|
|
'chat_prompt_size_min': 0,
|
|
'chat_prompt_size_max': 2048,
|
|
'chat_generation_attempts': 1,
|
|
'chat_generation_attempts_min': 1,
|
|
'chat_generation_attempts_max': 10,
|
|
'default_extensions': [],
|
|
'chat_default_extensions': ["gallery"],
|
|
'presets': {
|
|
'default': 'Default',
|
|
'.*(alpaca|llama|llava)': "LLaMA-Precise",
|
|
'.*pygmalion': 'NovelAI-Storywriter',
|
|
'.*RWKV': 'Naive',
|
|
'.*moss': 'MOSS',
|
|
},
|
|
'prompts': {
|
|
'default': 'QA',
|
|
'.*(gpt4chan|gpt-4chan|4chan)': 'GPT-4chan',
|
|
}
|
|
}
|
|
|
|
|
|
def str2bool(v):
|
|
if isinstance(v, bool):
|
|
return v
|
|
if v.lower() in ('yes', 'true', 't', 'y', '1'):
|
|
return True
|
|
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
|
|
return False
|
|
else:
|
|
raise argparse.ArgumentTypeError('Boolean value expected.')
|
|
|
|
|
|
parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=54))
|
|
|
|
# Basic settings
|
|
parser.add_argument('--notebook', action='store_true', help='Launch the web UI in notebook mode, where the output is written to the same text box as the input.')
|
|
parser.add_argument('--chat', action='store_true', help='Launch the web UI in chat mode with a style similar to the Character.AI website.')
|
|
parser.add_argument('--character', type=str, help='The name of the character to load in chat mode by default.')
|
|
parser.add_argument('--model', type=str, help='Name of the model to load by default.')
|
|
parser.add_argument('--lora', type=str, nargs="+", help='The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces.')
|
|
parser.add_argument("--model-dir", type=str, default='models/', help="Path to directory with all the models")
|
|
parser.add_argument("--lora-dir", type=str, default='loras/', help="Path to directory with all the loras")
|
|
parser.add_argument('--model-menu', action='store_true', help='Show a model menu in the terminal when the web UI is first launched.')
|
|
parser.add_argument('--no-stream', action='store_true', help='Don\'t stream the text output in real time.')
|
|
parser.add_argument('--settings', type=str, help='Load the default interface settings from this json file. See settings-template.json for an example. If you create a file called settings.json, this file will be loaded by default without the need to use the --settings flag.')
|
|
parser.add_argument('--extensions', type=str, nargs="+", help='The list of extensions to load. If you want to load more than one extension, write the names separated by spaces.')
|
|
parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
|
|
|
|
# Accelerate/transformers
|
|
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text. Warning: Training on CPU is extremely slow.')
|
|
parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
|
|
parser.add_argument('--gpu-memory', type=str, nargs="+", help='Maxmimum GPU memory in GiB to be allocated per GPU. Example: --gpu-memory 10 for a single GPU, --gpu-memory 10 5 for two GPUs. You can also set values in MiB like --gpu-memory 3500MiB.')
|
|
parser.add_argument('--cpu-memory', type=str, help='Maximum CPU memory in GiB to allocate for offloaded weights. Same as above.')
|
|
parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')
|
|
parser.add_argument('--disk-cache-dir', type=str, default="cache", help='Directory to save the disk cache to. Defaults to "cache".')
|
|
parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.')
|
|
parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
|
|
parser.add_argument('--no-cache', action='store_true', help='Set use_cache to False while generating text. This reduces the VRAM usage a bit at a performance cost.')
|
|
parser.add_argument('--xformers', action='store_true', help="Use xformer's memory efficient attention. This should increase your tokens/s.")
|
|
parser.add_argument('--sdp-attention', action='store_true', help="Use torch 2.0's sdp attention.")
|
|
parser.add_argument('--trust-remote-code', action='store_true', help="Set trust_remote_code=True while loading a model. Necessary for ChatGLM.")
|
|
|
|
# llama.cpp
|
|
parser.add_argument('--threads', type=int, default=0, help='Number of threads to use.')
|
|
parser.add_argument('--n_batch', type=int, default=512, help='Maximum number of prompt tokens to batch together when calling llama_eval.')
|
|
parser.add_argument('--no-mmap', action='store_true', help='Prevent mmap from being used.')
|
|
parser.add_argument('--mlock', action='store_true', help='Force the system to keep the model in RAM.')
|
|
parser.add_argument('--n-gpu-layers', type=int, default=0, help='Number of layers to offload to the GPU.')
|
|
|
|
# GPTQ
|
|
parser.add_argument('--wbits', type=int, default=0, help='Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.')
|
|
parser.add_argument('--model_type', type=str, help='Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported.')
|
|
parser.add_argument('--groupsize', type=int, default=-1, help='Group size.')
|
|
parser.add_argument('--pre_layer', type=int, default=0, help='The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models.')
|
|
parser.add_argument('--checkpoint', type=str, help='The path to the quantized checkpoint file. If not specified, it will be automatically detected.')
|
|
parser.add_argument('--monkey-patch', action='store_true', help='Apply the monkey patch for using LoRAs with quantized models.')
|
|
parser.add_argument('--quant_attn', action='store_true', help='(triton) Enable quant attention.')
|
|
parser.add_argument('--warmup_autotune', action='store_true', help='(triton) Enable warmup autotune.')
|
|
parser.add_argument('--fused_mlp', action='store_true', help='(triton) Enable fused mlp.')
|
|
|
|
# FlexGen
|
|
parser.add_argument('--flexgen', action='store_true', help='Enable the use of FlexGen offloading.')
|
|
parser.add_argument('--percent', type=int, nargs="+", default=[0, 100, 100, 0, 100, 0], help='FlexGen: allocation percentages. Must be 6 numbers separated by spaces (default: 0, 100, 100, 0, 100, 0).')
|
|
parser.add_argument("--compress-weight", action="store_true", help="FlexGen: activate weight compression.")
|
|
parser.add_argument("--pin-weight", type=str2bool, nargs="?", const=True, default=True, help="FlexGen: whether to pin weights (setting this to False reduces CPU memory by 20%%).")
|
|
|
|
# DeepSpeed
|
|
parser.add_argument('--deepspeed', action='store_true', help='Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration.')
|
|
parser.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.')
|
|
parser.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.')
|
|
|
|
# RWKV
|
|
parser.add_argument('--rwkv-strategy', type=str, default=None, help='RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8".')
|
|
parser.add_argument('--rwkv-cuda-on', action='store_true', help='RWKV: Compile the CUDA kernel for better performance.')
|
|
|
|
# Gradio
|
|
parser.add_argument('--listen', action='store_true', help='Make the web UI reachable from your local network.')
|
|
parser.add_argument('--listen-host', type=str, help='The hostname that the server will use.')
|
|
parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
|
|
parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
|
|
parser.add_argument('--auto-launch', action='store_true', default=False, help='Open the web UI in the default browser upon launch.')
|
|
parser.add_argument("--gradio-auth-path", type=str, help='Set the gradio authentication file path. The file should contain one or more user:password pairs in this format: "u1:p1,u2:p2,u3:p3"', default=None)
|
|
|
|
# API
|
|
parser.add_argument('--api', action='store_true', help='Enable the API extension.')
|
|
parser.add_argument('--public-api', action='store_true', help='Create a public URL for the API using Cloudfare.')
|
|
|
|
# Multimodal
|
|
parser.add_argument('--multimodal-pipeline', type=str, default=None, help='The multimodal pipeline to use. Examples: llava-7b, llava-13b.')
|
|
|
|
args = parser.parse_args()
|
|
args_defaults = parser.parse_args([])
|
|
|
|
# Deprecation warnings for parameters that have been renamed
|
|
deprecated_dict = {}
|
|
for k in deprecated_dict:
|
|
if getattr(args, k) != deprecated_dict[k][1]:
|
|
logging.warning(f"--{k} is deprecated and will be removed. Use --{deprecated_dict[k][0]} instead.")
|
|
setattr(args, deprecated_dict[k][0], getattr(args, k))
|
|
|
|
# Security warnings
|
|
if args.trust_remote_code:
|
|
logging.warning("trust_remote_code is enabled. This is dangerous.")
|
|
if args.share:
|
|
logging.warning("The gradio \"share link\" feature downloads a proprietary and unaudited blob to create a reverse tunnel. This is potentially dangerous.")
|
|
|
|
|
|
def add_extension(name):
|
|
if args.extensions is None:
|
|
args.extensions = [name]
|
|
elif 'api' not in args.extensions:
|
|
args.extensions.append(name)
|
|
|
|
|
|
# Activating the API extension
|
|
if args.api or args.public_api:
|
|
add_extension('api')
|
|
|
|
# Activating the multimodal extension
|
|
if args.multimodal_pipeline is not None:
|
|
add_extension('multimodal')
|
|
|
|
|
|
def is_chat():
|
|
return args.chat
|
|
|
|
|
|
# Loading model-specific settings
|
|
with Path(f'{args.model_dir}/config.yaml') as p:
|
|
if p.exists():
|
|
model_config = yaml.safe_load(open(p, 'r').read())
|
|
else:
|
|
model_config = {}
|
|
|
|
# Applying user-defined model settings
|
|
with Path(f'{args.model_dir}/config-user.yaml') as p:
|
|
if p.exists():
|
|
user_config = yaml.safe_load(open(p, 'r').read())
|
|
for k in user_config:
|
|
if k in model_config:
|
|
model_config[k].update(user_config[k])
|
|
else:
|
|
model_config[k] = user_config[k]
|
|
|
|
model_config = OrderedDict(model_config)
|