# Text generation web UI A Gradio web UI for Large Language Models. Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) of text generation. |![Image1](https://github.com/oobabooga/screenshots/raw/main/print_instruct.png) | ![Image2](https://github.com/oobabooga/screenshots/raw/main/print_chat.png) | |:---:|:---:| |![Image1](https://github.com/oobabooga/screenshots/raw/main/print_default.png) | ![Image2](https://github.com/oobabooga/screenshots/raw/main/print_parameters.png) | ## Features * 3 interface modes: default (two columns), notebook, and chat * Multiple model backends: [transformers](https://github.com/huggingface/transformers), [llama.cpp](https://github.com/ggerganov/llama.cpp), [ExLlama](https://github.com/turboderp/exllama), [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [ctransformers](https://github.com/marella/ctransformers) * Dropdown menu for quickly switching between different models * LoRA: load and unload LoRAs on the fly, train a new LoRA using QLoRA * Precise instruction templates for chat mode, including Llama-2-chat, Alpaca, Vicuna, WizardLM, StableLM, and many others * 4-bit, 8-bit, and CPU inference through the transformers library * Use llama.cpp models with transformers samplers (`llamacpp_HF` loader) * [Multimodal pipelines, including LLaVA and MiniGPT-4](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal) * [Extensions framework](docs/Extensions.md) * [Custom chat characters](docs/Chat-mode.md) * Very efficient text streaming * Markdown output with LaTeX rendering, to use for instance with [GALACTICA](https://github.com/paperswithcode/galai) * API, including endpoints for websocket streaming ([see the examples](https://github.com/oobabooga/text-generation-webui/blob/main/api-examples)) To learn how to use the various features, check out the Documentation: https://github.com/oobabooga/text-generation-webui/tree/main/docs ## Installation ### One-click installers | Windows | Linux | macOS | WSL | |--------|--------|--------|--------| | [oobabooga-windows.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_windows.zip) | [oobabooga-linux.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_linux.zip) |[oobabooga-macos.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_macos.zip) | [oobabooga-wsl.zip](https://github.com/oobabooga/text-generation-webui/releases/download/installers/oobabooga_wsl.zip) | Just download the zip above, extract it, and double-click on "start". The web UI and all its dependencies will be installed in the same folder. * The source codes and more information can be found here: https://github.com/oobabooga/one-click-installers * There is no need to run the installers as admin. * Huge thanks to [@jllllll](https://github.com/jllllll), [@ClayShoaf](https://github.com/ClayShoaf), and [@xNul](https://github.com/xNul) for their contributions to these installers. ### Manual installation using Conda Recommended if you have some experience with the command-line. #### 0. Install Conda https://docs.conda.io/en/latest/miniconda.html On Linux or WSL, it can be automatically installed with these two commands ([source](https://educe-ubc.github.io/conda.html)): ``` curl -sL "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh" > "Miniconda3.sh" bash Miniconda3.sh ``` #### 1. Create a new conda environment ``` conda create -n textgen python=3.10.9 conda activate textgen ``` #### 2. Install Pytorch | System | GPU | Command | |--------|---------|---------| | Linux/WSL | NVIDIA | `pip3 install torch torchvision torchaudio` | | Linux/WSL | CPU only | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu` | | Linux | AMD | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.4.2` | | MacOS + MPS | Any | `pip3 install torch torchvision torchaudio` | | Windows | NVIDIA | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117` | | Windows | CPU only | `pip3 install torch torchvision torchaudio` | The up-to-date commands can be found here: https://pytorch.org/get-started/locally/. #### 2.1 Additional information * MacOS users: https://github.com/oobabooga/text-generation-webui/pull/393 * AMD users: https://rentry.org/eq3hg #### 3. Install the web UI ``` git clone https://github.com/oobabooga/text-generation-webui cd text-generation-webui pip install -r requirements.txt ``` #### llama.cpp on AMD, Metal, and some specific CPUs Precompiled wheels are included for CPU-only and NVIDIA GPUs (cuBLAS). For AMD, Metal, and some specific CPUs, you need to uninstall those wheels and compile llama-cpp-python yourself. To uninstall: ``` pip uninstall -y llama-cpp-python llama-cpp-python-cuda ``` To compile: https://github.com/abetlen/llama-cpp-python#installation-with-openblas--cublas--clblast--metal #### bitsandbytes on older NVIDIA GPUs bitsandbytes >= 0.39 may not work. In that case, to use `--load-in-8bit`, you may have to downgrade like this: * Linux: `pip install bitsandbytes==0.38.1` * Windows: `pip install https://github.com/jllllll/bitsandbytes-windows-webui/raw/main/bitsandbytes-0.38.1-py3-none-any.whl` ### Alternative: Docker ``` ln -s docker/{Dockerfile,docker-compose.yml,.dockerignore} . cp docker/.env.example .env # Edit .env and set TORCH_CUDA_ARCH_LIST based on your GPU model docker compose up --build ``` * You need to have docker compose v2.17 or higher installed. See [this guide](https://github.com/oobabooga/text-generation-webui/blob/main/docs/Docker.md) for instructions. * For additional docker files, check out [this repository](https://github.com/Atinoda/text-generation-webui-docker). ### Updating the requirements From time to time, the `requirements.txt` changes. To update, use these commands: ``` conda activate textgen cd text-generation-webui pip install -r requirements.txt --upgrade ``` ## Downloading models Models should be placed in the `text-generation-webui/models` folder. They are usually downloaded from [Hugging Face](https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads). * Transformers or GPTQ models are made of several files and must be placed in a subfolder. Example: ``` text-generation-webui ├── models │   ├── lmsys_vicuna-33b-v1.3 │   │   ├── config.json │   │   ├── generation_config.json │   │   ├── pytorch_model-00001-of-00007.bin │   │   ├── pytorch_model-00002-of-00007.bin │   │   ├── pytorch_model-00003-of-00007.bin │   │   ├── pytorch_model-00004-of-00007.bin │   │   ├── pytorch_model-00005-of-00007.bin │   │   ├── pytorch_model-00006-of-00007.bin │   │   ├── pytorch_model-00007-of-00007.bin │   │   ├── pytorch_model.bin.index.json │   │   ├── special_tokens_map.json │   │   ├── tokenizer_config.json │   │   └── tokenizer.model ``` In the "Model" tab of the UI, those models can be automatically downloaded from Hugging Face. You can also download them via the command-line with `python download-model.py organization/model`. * GGML models are a single file and should be placed directly into `models`. Example: ``` text-generation-webui ├── models │   ├── llama-13b.ggmlv3.q4_K_M.bin ``` Those models must be downloaded manually, as they are not currently supported by the automated downloader. #### GPT-4chan
Instructions [GPT-4chan](https://huggingface.co/ykilcher/gpt-4chan) has been shut down from Hugging Face, so you need to download it elsewhere. You have two options: * Torrent: [16-bit](https://archive.org/details/gpt4chan_model_float16) / [32-bit](https://archive.org/details/gpt4chan_model) * Direct download: [16-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model_float16/) / [32-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model/) The 32-bit version is only relevant if you intend to run the model in CPU mode. Otherwise, you should use the 16-bit version. After downloading the model, follow these steps: 1. Place the files under `models/gpt4chan_model_float16` or `models/gpt4chan_model`. 2. Place GPT-J 6B's config.json file in that same folder: [config.json](https://huggingface.co/EleutherAI/gpt-j-6B/raw/main/config.json). 3. Download GPT-J 6B's tokenizer files (they will be automatically detected when you attempt to load GPT-4chan): ``` python download-model.py EleutherAI/gpt-j-6B --text-only ``` When you load this model in default or notebook modes, the "HTML" tab will show the generated text in 4chan format: ![Image3](https://github.com/oobabooga/screenshots/raw/main/gpt4chan.png)
## Starting the web UI conda activate textgen cd text-generation-webui python server.py Then browse to `http://localhost:7860/?__theme=dark` Optionally, you can use the following command-line flags: #### Basic settings | Flag | Description | |--------------------------------------------|-------------| | `-h`, `--help` | Show this help message and exit. | | `--multi-user` | Multi-user mode. Chat histories are not saved or automatically loaded. WARNING: this is highly experimental. | | `--character CHARACTER` | The name of the character to load in chat mode by default. | | `--model MODEL` | Name of the model to load by default. | | `--lora LORA [LORA ...]` | The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces. | | `--model-dir MODEL_DIR` | Path to directory with all the models. | | `--lora-dir LORA_DIR` | Path to directory with all the loras. | | `--model-menu` | Show a model menu in the terminal when the web UI is first launched. | | `--settings SETTINGS_FILE` | Load the default interface settings from this yaml file. See `settings-template.yaml` for an example. If you create a file called `settings.yaml`, this file will be loaded by default without the need to use the `--settings` flag. | | `--extensions EXTENSIONS [EXTENSIONS ...]` | The list of extensions to load. If you want to load more than one extension, write the names separated by spaces. | | `--verbose` | Print the prompts to the terminal. | #### Model loader | Flag | Description | |--------------------------------------------|-------------| | `--loader LOADER` | Choose the model loader manually, otherwise, it will get autodetected. Valid options: transformers, autogptq, gptq-for-llama, exllama, exllama_hf, llamacpp, rwkv, ctransformers | #### Accelerate/transformers | Flag | Description | |---------------------------------------------|-------------| | `--cpu` | Use the CPU to generate text. Warning: Training on CPU is extremely slow.| | `--auto-devices` | Automatically split the model across the available GPU(s) and CPU. | | `--gpu-memory GPU_MEMORY [GPU_MEMORY ...]` | Maximum GPU memory in GiB to be allocated per GPU. Example: `--gpu-memory 10` for a single GPU, `--gpu-memory 10 5` for two GPUs. You can also set values in MiB like `--gpu-memory 3500MiB`. | | `--cpu-memory CPU_MEMORY` | Maximum CPU memory in GiB to allocate for offloaded weights. Same as above.| | `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. | | `--disk-cache-dir DISK_CACHE_DIR` | Directory to save the disk cache to. Defaults to `cache/`. | | `--load-in-8bit` | Load the model with 8-bit precision (using bitsandbytes).| | `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. | | `--no-cache` | Set `use_cache` to False while generating text. This reduces the VRAM usage a bit with a performance cost. | | `--xformers` | Use xformer's memory efficient attention. This should increase your tokens/s. | | `--sdp-attention` | Use torch 2.0's sdp attention. | | `--trust-remote-code` | Set trust_remote_code=True while loading a model. Necessary for ChatGLM and Falcon. | #### Accelerate 4-bit ⚠️ Requires minimum compute of 7.0 on Windows at the moment. | Flag | Description | |---------------------------------------------|-------------| | `--load-in-4bit` | Load the model with 4-bit precision (using bitsandbytes). | | `--compute_dtype COMPUTE_DTYPE` | compute dtype for 4-bit. Valid options: bfloat16, float16, float32. | | `--quant_type QUANT_TYPE` | quant_type for 4-bit. Valid options: nf4, fp4. | | `--use_double_quant` | use_double_quant for 4-bit. | #### GGML (for llama.cpp and ctransformers) | Flag | Description | |-------------|-------------| | `--threads` | Number of threads to use. | | `--n_batch` | Maximum number of prompt tokens to batch together when calling llama_eval. | | `--n-gpu-layers N_GPU_LAYERS` | Number of layers to offload to the GPU. Only works if llama-cpp-python was compiled with BLAS. Set this to 1000000000 to offload all layers to the GPU. | | `--n_ctx N_CTX` | Size of the prompt context. | #### llama.cpp | Flag | Description | |-------------|-------------| | `--no-mmap` | Prevent mmap from being used. | | `--mlock` | Force the system to keep the model in RAM. | | `--mul_mat_q` | Activate new mulmat kernels. | | `--cache-capacity CACHE_CAPACITY` | Maximum cache capacity. Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. | | `--tensor_split TENSOR_SPLIT` | Split the model across multiple GPUs, comma-separated list of proportions, e.g. 18,17 | | `--llama_cpp_seed SEED` | Seed for llama-cpp models. Default 0 (random). | | `--n_gqa N_GQA` | grouped-query attention. Must be 8 for llama-2 70b. | | `--rms_norm_eps RMS_NORM_EPS` | 5e-6 is a good value for llama-2 models. | | `--cpu` | Use the CPU version of llama-cpp-python instead of the GPU-accelerated version. | |`--cfg-cache` | llamacpp_HF: Create an additional cache for CFG negative prompts. | #### ctransformers | Flag | Description | |-------------|-------------| | `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently gpt2, gptj, gptneox, falcon, llama, mpt, starcoder (gptbigcode), dollyv2, and replit are supported. | #### AutoGPTQ | Flag | Description | |------------------|-------------| | `--triton` | Use triton. | | `--no_inject_fused_attention` | Disable the use of fused attention, which will use less VRAM at the cost of slower inference. | | `--no_inject_fused_mlp` | Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference. | | `--no_use_cuda_fp16` | This can make models faster on some systems. | | `--desc_act` | For models that don't have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig. | | `--disable_exllama` | Disable ExLlama kernel, which can improve inference speed on some systems. | #### ExLlama | Flag | Description | |------------------|-------------| |`--gpu-split` | Comma-separated list of VRAM (in GB) to use per GPU device for model layers, e.g. `20,7,7` | |`--max_seq_len MAX_SEQ_LEN` | Maximum sequence length. | |`--cfg-cache` | ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama. | #### GPTQ-for-LLaMa | Flag | Description | |---------------------------|-------------| | `--wbits WBITS` | Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. | | `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. | | `--groupsize GROUPSIZE` | Group size. | | `--pre_layer PRE_LAYER [PRE_LAYER ...]` | The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg `--pre_layer 30 60`. | | `--checkpoint CHECKPOINT` | The path to the quantized checkpoint file. If not specified, it will be automatically detected. | | `--monkey-patch` | Apply the monkey patch for using LoRAs with quantized models. #### DeepSpeed | Flag | Description | |---------------------------------------|-------------| | `--deepspeed` | Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration. | | `--nvme-offload-dir NVME_OFFLOAD_DIR` | DeepSpeed: Directory to use for ZeRO-3 NVME offloading. | | `--local_rank LOCAL_RANK` | DeepSpeed: Optional argument for distributed setups. | #### RWKV | Flag | Description | |---------------------------------|-------------| | `--rwkv-strategy RWKV_STRATEGY` | RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8". | | `--rwkv-cuda-on` | RWKV: Compile the CUDA kernel for better performance. | #### RoPE (for llama.cpp, ExLlama, and transformers) | Flag | Description | |------------------|-------------| | `--alpha_value ALPHA_VALUE` | Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both. | `--rope_freq_base ROPE_FREQ_BASE` | If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63) | `--compress_pos_emb COMPRESS_POS_EMB` | Positional embeddings compression factor. Should be set to (context length) / (model's original context length). Equal to 1/rope_freq_scale. #### Gradio | Flag | Description | |---------------------------------------|-------------| | `--listen` | Make the web UI reachable from your local network. | | `--listen-host LISTEN_HOST` | The hostname that the server will use. | | `--listen-port LISTEN_PORT` | The listening port that the server will use. | | `--share` | Create a public URL. This is useful for running the web UI on Google Colab or similar. | | `--auto-launch` | Open the web UI in the default browser upon launch. | | `--gradio-auth USER:PWD` | set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3" | | `--gradio-auth-path GRADIO_AUTH_PATH` | Set the gradio authentication file path. The file should contain one or more user:password pairs in this format: "u1:p1,u2:p2,u3:p3" | | `--ssl-keyfile SSL_KEYFILE` | The path to the SSL certificate key file. | | `--ssl-certfile SSL_CERTFILE` | The path to the SSL certificate cert file. | #### API | Flag | Description | |---------------------------------------|-------------| | `--api` | Enable the API extension. | | `--public-api` | Create a public URL for the API using Cloudfare. | | `--public-api-id PUBLIC_API_ID` | Tunnel ID for named Cloudflare Tunnel. Use together with public-api option. | | `--api-blocking-port BLOCKING_PORT` | The listening port for the blocking API. | | `--api-streaming-port STREAMING_PORT` | The listening port for the streaming API. | #### Multimodal | Flag | Description | |---------------------------------------|-------------| | `--multimodal-pipeline PIPELINE` | The multimodal pipeline to use. Examples: `llava-7b`, `llava-13b`. | ## Presets Inference settings presets can be created under `presets/` as yaml files. These files are detected automatically at startup. The presets that are included by default are the result of a contest that received 7215 votes. More details can be found [here](https://github.com/oobabooga/oobabooga.github.io/blob/main/arena/results.md). ## Contributing If you would like to contribute to the project, check out the [Contributing guidelines](https://github.com/oobabooga/text-generation-webui/wiki/Contributing-guidelines). ## Community * Subreddit: https://www.reddit.com/r/oobabooga/ * Discord: https://discord.gg/jwZCF2dPQN ## Acknowledgment In August 2023, [Andreessen Horowitz](https://a16z.com/) (a16z) provided a generous grant to encourage and support my independent work on this project. I am **extremely** grateful for their trust and recognition, which will allow me to dedicate more time towards realizing the full potential of text-generation-webui.