import random from pathlib import Path import torch from exllamav2 import ( ExLlamaV2, ExLlamaV2Cache, ExLlamaV2Config, ExLlamaV2Tokenizer ) from exllamav2.generator import ExLlamaV2BaseGenerator, ExLlamaV2Sampler from modules import shared from modules.logging_colors import logger from modules.text_generation import get_max_prompt_length try: import flash_attn except ModuleNotFoundError: logger.warning( 'You are running ExLlamaV2 without flash-attention. This will cause the VRAM usage ' 'to be a lot higher than it could be.\n' 'Try installing flash-attention following the instructions here: ' 'https://github.com/Dao-AILab/flash-attention#installation-and-features' ) pass class Exllamav2Model: def __init__(self): pass @classmethod def from_pretrained(self, path_to_model): path_to_model = Path(f'{shared.args.model_dir}') / Path(path_to_model) config = ExLlamaV2Config() config.model_dir = str(path_to_model) config.prepare() config.max_seq_len = shared.args.max_seq_len config.scale_pos_emb = shared.args.compress_pos_emb config.scale_alpha_value = shared.args.alpha_value model = ExLlamaV2(config) split = None if shared.args.gpu_split: split = [float(alloc) for alloc in shared.args.gpu_split.split(",")] model.load(split) tokenizer = ExLlamaV2Tokenizer(config) cache = ExLlamaV2Cache(model) generator = ExLlamaV2BaseGenerator(model, cache, tokenizer) result = self() result.model = model result.cache = cache result.tokenizer = tokenizer result.generator = generator return result, result def encode(self, string, **kwargs): return self.tokenizer.encode(string, add_bos=True) def decode(self, ids, **kwargs): if isinstance(ids, list): ids = torch.tensor([ids]) elif isinstance(ids, torch.Tensor) and ids.numel() == 1: ids = ids.view(1, -1) return self.tokenizer.decode(ids)[0] def get_logits(self, token_ids, **kwargs): self.cache.current_seq_len = 0 self.model.forward(token_ids[:, :-1], self.cache, input_mask=None, preprocess_only=True) return self.model.forward(token_ids[:, -1:], self.cache, input_mask=None, **kwargs).float().cpu() def generate_with_streaming(self, prompt, state): settings = ExLlamaV2Sampler.Settings() settings.temperature = state['temperature'] settings.top_k = state['top_k'] settings.top_p = state['top_p'] settings.token_repetition_penalty = state['repetition_penalty'] settings.token_repetition_range = -1 if state['repetition_penalty_range'] <= 0 else state['repetition_penalty_range'] if state['ban_eos_token']: settings.disallow_tokens(self.tokenizer, [self.tokenizer.eos_token_id]) if state['custom_token_bans']: to_ban = [int(x) for x in state['custom_token_bans'].split(',')] if len(to_ban) > 0: settings.disallow_tokens(self.tokenizer, to_ban) ids = self.tokenizer.encode(prompt, add_bos=state['add_bos_token']) ids = ids[:, -get_max_prompt_length(state):] initial_len = ids.shape[-1] if state['auto_max_new_tokens']: max_new_tokens = state['truncation_length'] - ids.shape[-1] else: max_new_tokens = state['max_new_tokens'] # _gen_begin_base self.cache.current_seq_len = 0 self.model.forward(ids[:, :-1], self.cache, input_mask=None, preprocess_only=True) has_leading_space = False for i in range(max_new_tokens): logits = self.model.forward(ids[:, -1:], self.cache, input_mask=None).float().cpu() token, _ = ExLlamaV2Sampler.sample(logits, settings, ids, random.random()) ids = torch.cat([ids, token], dim=1) if i == 0 and self.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'): has_leading_space = True decoded_text = self.tokenizer.decode(ids[:, initial_len:])[0] if has_leading_space: decoded_text = ' ' + decoded_text yield decoded_text if token.item() == self.tokenizer.eos_token_id or shared.stop_everything: break def generate(self, prompt, state): output = '' for output in self.generate_with_streaming(prompt, state): pass return output