Add extension example, replace input_hijack with chat_input_modifier (#3307)

This commit is contained in:
oobabooga 2023-07-25 18:49:56 -03:00 committed by GitHub
parent 08c622df2e
commit ef8637e32d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 335 additions and 100 deletions

View File

@ -1,45 +1,45 @@
Extensions are defined by files named `script.py` inside subfolders of `text-generation-webui/extensions`. They are loaded at startup if specified with the `--extensions` flag. # Extensions
Extensions are defined by files named `script.py` inside subfolders of `text-generation-webui/extensions`. They are loaded at startup if the folder name is specified after the `--extensions` flag.
For instance, `extensions/silero_tts/script.py` gets loaded with `python server.py --extensions silero_tts`. For instance, `extensions/silero_tts/script.py` gets loaded with `python server.py --extensions silero_tts`.
## [text-generation-webui-extensions](https://github.com/oobabooga/text-generation-webui-extensions) ## [text-generation-webui-extensions](https://github.com/oobabooga/text-generation-webui-extensions)
The link above contains a directory of user extensions for text-generation-webui. The repository above contains a directory of user extensions.
If you create an extension, you are welcome to host it in a GitHub repository and submit it to the list above. If you create an extension, you are welcome to host it in a GitHub repository and submit a PR adding it to the list above.
## Built-in extensions ## Built-in extensions
Most of these have been created by the extremely talented contributors that you can find here: [contributors](https://github.com/oobabooga/text-generation-webui/graphs/contributors?from=2022-12-18&to=&type=a).
|Extension|Description| |Extension|Description|
|---------|-----------| |---------|-----------|
|[api](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/api)| Creates an API with two endpoints, one for streaming at `/api/v1/stream` port 5005 and another for blocking at `/api/v1/generate` port 5000. This is the main API for this web UI. | |[api](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/api)| Creates an API with two endpoints, one for streaming at `/api/v1/stream` port 5005 and another for blocking at `/api/v1/generate` port 5000. This is the main API for the webui. |
|[openai](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/openai)| Creates an API that mimics the OpenAI API and can be used as a drop-in replacement. |
|[multimodal](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal) | Adds multimodality support (text+images). For a detailed description see [README.md](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal/README.md) in the extension directory. |
|[google_translate](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/google_translate)| Automatically translates inputs and outputs using Google Translate.| |[google_translate](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/google_translate)| Automatically translates inputs and outputs using Google Translate.|
|[character_bias](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/character_bias)| Just a very simple example that biases the bot's responses in chat mode.| |[silero_tts](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/silero_tts)| Text-to-speech extension using [Silero](https://github.com/snakers4/silero-models). When used in chat mode, responses are replaced with an audio widget. |
|[gallery](https://github.com/oobabooga/text-generation-webui/blob/main/extensions/gallery/)| Creates a gallery with the chat characters and their pictures. |
|[silero_tts](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/silero_tts)| Text-to-speech extension using [Silero](https://github.com/snakers4/silero-models). When used in chat mode, it replaces the responses with an audio widget. |
|[elevenlabs_tts](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/elevenlabs_tts)| Text-to-speech extension using the [ElevenLabs](https://beta.elevenlabs.io/) API. You need an API key to use it. | |[elevenlabs_tts](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/elevenlabs_tts)| Text-to-speech extension using the [ElevenLabs](https://beta.elevenlabs.io/) API. You need an API key to use it. |
|[send_pictures](https://github.com/oobabooga/text-generation-webui/blob/main/extensions/send_pictures/)| Creates an image upload field that can be used to send images to the bot in chat mode. Captions are automatically generated using BLIP. |
|[whisper_stt](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/whisper_stt)| Allows you to enter your inputs in chat mode using your microphone. | |[whisper_stt](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/whisper_stt)| Allows you to enter your inputs in chat mode using your microphone. |
|[sd_api_pictures](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/sd_api_pictures)| Allows you to request pictures from the bot in chat mode, which will be generated using the AUTOMATIC1111 Stable Diffusion API. See examples [here](https://github.com/oobabooga/text-generation-webui/pull/309). | |[sd_api_pictures](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/sd_api_pictures)| Allows you to request pictures from the bot in chat mode, which will be generated using the AUTOMATIC1111 Stable Diffusion API. See examples [here](https://github.com/oobabooga/text-generation-webui/pull/309). |
|[multimodal](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal) | Adds multimodality support (text+images). For a detailed description see [README.md](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal/README.md) in the extension directory. | |[character_bias](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/character_bias)| Just a very simple example that adds a hidden string at the beginning of the bot's reply in chat mode. |
|[openai](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/openai)| Creates an API that mimics the OpenAI API and can be used as a drop-in replacement. | |[send_pictures](https://github.com/oobabooga/text-generation-webui/blob/main/extensions/send_pictures/)| Creates an image upload field that can be used to send images to the bot in chat mode. Captions are automatically generated using BLIP. |
|[gallery](https://github.com/oobabooga/text-generation-webui/blob/main/extensions/gallery/)| Creates a gallery with the chat characters and their pictures. |
|[superbooga](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/superbooga)| An extension that uses ChromaDB to create an arbitrarily large pseudocontext, taking as input text files, URLs, or pasted text. Based on https://github.com/kaiokendev/superbig. | |[superbooga](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/superbooga)| An extension that uses ChromaDB to create an arbitrarily large pseudocontext, taking as input text files, URLs, or pasted text. Based on https://github.com/kaiokendev/superbig. |
## How to write an extension ## How to write an extension
script.py may define the special functions and variables below. The extensions framework is based on special functions and variables that you can define in `script.py`. The functions are the following:
#### Predefined functions
| Function | Description | | Function | Description |
|-------------|-------------| |-------------|-------------|
| `def setup()` | Is executed when the extension gets imported. |
| `def ui()` | Creates custom gradio elements when the UI is launched. | | `def ui()` | Creates custom gradio elements when the UI is launched. |
| `def custom_css()` | Returns custom CSS as a string. It is applied whenever the web UI is loaded. | | `def custom_css()` | Returns custom CSS as a string. It is applied whenever the web UI is loaded. |
| `def custom_js()` | Same as above but for javascript. | | `def custom_js()` | Same as above but for javascript. |
| `def input_modifier(string, state)` | Modifies the input string before it enters the model. In chat mode, it is applied to the user message. Otherwise, it is applied to the entire prompt. | | `def input_modifier(string, state)` | Modifies the input string before it enters the model. In chat mode, it is applied to the user message. Otherwise, it is applied to the entire prompt. |
| `def output_modifier(string, state)` | Modifies the output string before it is presented in the UI. In chat mode, it is applied to the bot's reply. Otherwise, it is applied to the entire output. | | `def output_modifier(string, state)` | Modifies the output string before it is presented in the UI. In chat mode, it is applied to the bot's reply. Otherwise, it is applied to the entire output. |
| `def chat_input_modifier(text, visible_text, state)` | Modifies both the visible and internal inputs in chat mode. Can be used to hijack the chat input with custom content. |
| `def bot_prefix_modifier(string, state)` | Applied in chat mode to the prefix for the bot's reply. | | `def bot_prefix_modifier(string, state)` | Applied in chat mode to the prefix for the bot's reply. |
| `def state_modifier(state)` | Modifies the dictionary containing the UI input parameters before it is used by the text generation functions. | | `def state_modifier(state)` | Modifies the dictionary containing the UI input parameters before it is used by the text generation functions. |
| `def history_modifier(history)` | Modifies the chat history before the text generation in chat mode begins. | | `def history_modifier(history)` | Modifies the chat history before the text generation in chat mode begins. |
@ -48,9 +48,7 @@ script.py may define the special functions and variables below.
| `def tokenizer_modifier(state, prompt, input_ids, input_embeds)` | Modifies the `input_ids`/`input_embeds` fed to the model. Should return `prompt`, `input_ids`, `input_embeds`. See the `multimodal` extension for an example. | | `def tokenizer_modifier(state, prompt, input_ids, input_embeds)` | Modifies the `input_ids`/`input_embeds` fed to the model. Should return `prompt`, `input_ids`, `input_embeds`. See the `multimodal` extension for an example. |
| `def custom_tokenized_length(prompt)` | Used in conjunction with `tokenizer_modifier`, returns the length in tokens of `prompt`. See the `multimodal` extension for an example. | | `def custom_tokenized_length(prompt)` | Used in conjunction with `tokenizer_modifier`, returns the length in tokens of `prompt`. See the `multimodal` extension for an example. |
#### `params` dictionary Additionally, you can define a special `params` dictionary. In it, the `display_name` key is used to define the displayed name of the extension in the UI, and the `is_tab` key is used to define whether the extension should appear in a new tab. By default, extensions appear at the bottom of the "Text generation" tab.
In this dictionary, `display_name` is used to define the displayed name of the extension in the UI, and `is_tab` is used to define whether the extension should appear in a new tab. By default, extensions appear at the bottom of the "Text generation" tab.
Example: Example:
@ -61,7 +59,7 @@ params = {
} }
``` ```
Additionally, `params` may contain variables that you want to be customizable through a `settings.json` file. For instance, assuming the extension is in `extensions/google_translate`, the variable `language string` in Additionally, `params` may contain variables that you want to be customizable through a `settings.yaml` file. For instance, assuming the extension is in `extensions/google_translate`, the variable `language string` in
```python ```python
params = { params = {
@ -71,32 +69,19 @@ params = {
} }
``` ```
can be customized by adding a key called `google_translate-language string` to `settings.json`: can be customized by adding a key called `google_translate-language string` to `settings.yaml`:
```python ```python
"google_translate-language string": "fr", google_translate-language string: 'fr'
``` ```
That is, the syntax is `extension_name-variable_name`. That is, the syntax for the key is `extension_name-variable_name`.
#### `input_hijack` dictionary
```python
input_hijack = {
'state': False,
'value': ["", ""]
}
```
This is only used in chat mode. If your extension sets `input_hijack['state'] = True` at any moment, the next call to `modules.chat.chatbot_wrapper` will use the values inside `input_hijack['value']` as the user input for text generation. See the `send_pictures` extension above for an example.
Additionally, your extension can set the value to be a callback in the form of `def cb(text: str, visible_text: str) -> [str, str]`. See the `multimodal` extension above for an example.
## Using multiple extensions at the same time ## Using multiple extensions at the same time
In order to use your extension, you must start the web UI with the `--extensions` flag followed by the name of your extension (the folder under `text-generation-webui/extension` where `script.py` resides). You can activate more than one extension at a time by providing their names separated by spaces after `--extensions`. The input, output, and bot prefix modifiers will be applied in the specified order.
You can activate more than one extension at a time by providing their names separated by spaces. The input, output, and bot prefix modifiers will be applied in the specified order.
Example:
``` ```
python server.py --extensions enthusiasm translate # First apply enthusiasm, then translate python server.py --extensions enthusiasm translate # First apply enthusiasm, then translate
@ -106,56 +91,142 @@ python server.py --extensions translate enthusiasm # First apply translate, then
Do note, that for: Do note, that for:
- `custom_generate_chat_prompt` - `custom_generate_chat_prompt`
- `custom_generate_reply` - `custom_generate_reply`
- `tokenizer_modifier`
- `custom_tokenized_length` - `custom_tokenized_length`
only the first declaration encountered will be used and the rest will be ignored. only the first declaration encountered will be used and the rest will be ignored.
## The `bot_prefix_modifier` ## A full example
In chat mode, this function modifies the prefix for a new bot message. For instance, if your bot is named `Marie Antoinette`, the default prefix for a new message will be The source code below can be found at [extensions/example/script.py](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/example/script.py).
```
Marie Antoinette:
```
Using `bot_prefix_modifier`, you can change it to:
```
Marie Antoinette: *I am very enthusiastic*
```
Marie Antoinette will become very enthusiastic in all her messages.
## `custom_generate_reply` example
Once defined in a `script.py`, this function is executed in place of the main generation functions. You can use it to connect the web UI to an external API, or to load a custom model that is not supported yet.
Note that in chat mode, this function must only return the new text, whereas in other modes it must return the original prompt + the new text.
```python ```python
import datetime """
An example of extension. It does nothing, but you can add transformations
before the return statements to customize the webui behavior.
def custom_generate_reply(question, original_question, seed, state, stopping_strings): Starting from history_modifier and ending in output_modifier, the
cumulative = '' functions are declared in the same order that they are called at
for i in range(10): generation time.
cumulative += f"Counting: {i}...\n" """
yield cumulative
cumulative += f"Done! {str(datetime.datetime.now())}" import torch
yield cumulative
```
## `custom_generate_chat_prompt` example
Below is an extension that just reproduces the default prompt generator in `modules/chat.py`. You can modify it freely to come up with your own prompts in chat mode.
```python
from modules import chat from modules import chat
from modules.text_generation import (
decode,
encode,
generate_reply,
)
from transformers import LogitsProcessor
params = {
"display_name": "Example Extension",
"is_tab": False,
}
class MyLogits(LogitsProcessor):
"""
Manipulates the probabilities for the next token before it gets sampled.
It gets used in the custom_logits_processor function below.
"""
def __init__(self):
pass
def __call__(self, input_ids, scores):
# probs = torch.softmax(scores, dim=-1, dtype=torch.float)
# probs[0] /= probs[0].sum()
# scores = torch.log(probs / (1 - probs))
return scores
def history_modifier(history):
"""
Modifies the chat history.
Only used in chat mode.
"""
return history
def state_modifier(state):
"""
Modifies the state variable, which is a dictionary containing the input
values in the UI like sliders and checkboxes.
"""
return state
def chat_input_modifier(text, visible_text, state):
"""
Modifies the internal and visible input strings in chat mode.
"""
return text, visible_text
def input_modifier(string, state):
"""
In chat mode, modifies the user input. The modified version goes into
history['internal'], and the original version goes into history['visible'].
In default/notebook modes, modifies the whole prompt.
"""
return string
def bot_prefix_modifier(string, state):
"""
Modifies the prefix for the next bot reply in chat mode.
By default, the prefix will be something like "Bot Name:".
"""
return string
def tokenizer_modifier(state, prompt, input_ids, input_embeds):
"""
Modifies the input ids and embeds.
Used by the multimodal extension to put image embeddings in the prompt.
Only used by loaders that use the transformers library for sampling.
"""
return prompt, input_ids, input_embeds
def logits_processor_modifier(processor_list, input_ids):
"""
Adds logits processors to the list.
Only used by loaders that use the transformers library for sampling.
"""
processor_list.append(MyLogits())
return processor_list
def output_modifier(string, state):
"""
Modifies the LLM output before it gets presented.
In chat mode, the modified version goes into history['internal'], and the original version goes into history['visible'].
"""
return string
def custom_generate_chat_prompt(user_input, state, **kwargs): def custom_generate_chat_prompt(user_input, state, **kwargs):
"""
# Do something with kwargs['history'] or state Replaces the function that generates the prompt from the chat history.
Only used in chat mode.
"""
result = chat.generate_chat_prompt(user_input, state, **kwargs)
return result
return chat.generate_chat_prompt(user_input, state, **kwargs) def custom_css():
"""
Returns a CSS string that gets appended to the CSS for the webui.
"""
return ''
def custom_js():
"""
Returns a javascript string that gets appended to the javascript for the webui.
"""
return ''
def setup():
"""
Gets executed only once, when the extension is imported.
"""
pass
def ui():
"""
Gets executed when the UI is drawn. Custom gradio elements and their corresponding
event handlers should be defined here.
"""
pass
``` ```

View File

@ -7,10 +7,15 @@ from modules import shared
from modules.chat import generate_chat_reply from modules.chat import generate_chat_reply
from modules.LoRA import add_lora_to_model from modules.LoRA import add_lora_to_model
from modules.models import load_model, unload_model from modules.models import load_model, unload_model
from modules.models_settings import (get_model_settings_from_yamls, from modules.models_settings import (
update_model_parameters) get_model_settings_from_yamls,
from modules.text_generation import (encode, generate_reply, update_model_parameters
stop_everything_event) )
from modules.text_generation import (
encode,
generate_reply,
stop_everything_event
)
from modules.utils import get_available_models from modules.utils import get_available_models

View File

@ -2,12 +2,15 @@ import asyncio
import json import json
from threading import Thread from threading import Thread
from websockets.server import serve from extensions.api.util import (
build_parameters,
from extensions.api.util import build_parameters, try_start_cloudflared, with_api_lock try_start_cloudflared,
with_api_lock
)
from modules import shared from modules import shared
from modules.chat import generate_chat_reply from modules.chat import generate_chat_reply
from modules.text_generation import generate_reply from modules.text_generation import generate_reply
from websockets.server import serve
PATH = '/api/v1/stream' PATH = '/api/v1/stream'

View File

@ -10,7 +10,6 @@ from modules import shared
from modules.chat import load_character_memoized from modules.chat import load_character_memoized
from modules.presets import load_preset_memoized from modules.presets import load_preset_memoized
# We use a thread local to store the asyncio lock, so that each thread # We use a thread local to store the asyncio lock, so that each thread
# has its own lock. This isn't strictly necessary, but it makes it # has its own lock. This isn't strictly necessary, but it makes it
# such that if we can support multiple worker threads in the future, # such that if we can support multiple worker threads in the future,

View File

@ -0,0 +1,129 @@
"""
An example of extension. It does nothing, but you can add transformations
before the return statements to customize the webui behavior.
Starting from history_modifier and ending in output_modifier, the
functions are declared in the same order that they are called at
generation time.
"""
import torch
from modules import chat
from modules.text_generation import (
decode,
encode,
generate_reply,
)
from transformers import LogitsProcessor
params = {
"display_name": "Example Extension",
"is_tab": False,
}
class MyLogits(LogitsProcessor):
"""
Manipulates the probabilities for the next token before it gets sampled.
It gets used in the custom_logits_processor function below.
"""
def __init__(self):
pass
def __call__(self, input_ids, scores):
# probs = torch.softmax(scores, dim=-1, dtype=torch.float)
# probs[0] /= probs[0].sum()
# scores = torch.log(probs / (1 - probs))
return scores
def history_modifier(history):
"""
Modifies the chat history.
Only used in chat mode.
"""
return history
def state_modifier(state):
"""
Modifies the state variable, which is a dictionary containing the input
values in the UI like sliders and checkboxes.
"""
return state
def chat_input_modifier(text, visible_text, state):
"""
Modifies the internal and visible input strings in chat mode.
"""
return text, visible_text
def input_modifier(string, state):
"""
In chat mode, modifies the user input. The modified version goes into
history['internal'], and the original version goes into history['visible'].
In default/notebook modes, modifies the whole prompt.
"""
return string
def bot_prefix_modifier(string, state):
"""
Modifies the prefix for the next bot reply in chat mode.
By default, the prefix will be something like "Bot Name:".
"""
return string
def tokenizer_modifier(state, prompt, input_ids, input_embeds):
"""
Modifies the input ids and embeds.
Used by the multimodal extension to put image embeddings in the prompt.
Only used by loaders that use the transformers library for sampling.
"""
return prompt, input_ids, input_embeds
def logits_processor_modifier(processor_list, input_ids):
"""
Adds logits processors to the list.
Only used by loaders that use the transformers library for sampling.
"""
processor_list.append(MyLogits())
return processor_list
def output_modifier(string, state):
"""
Modifies the LLM output before it gets presented.
In chat mode, the modified version goes into history['internal'], and the original version goes into history['visible'].
"""
return string
def custom_generate_chat_prompt(user_input, state, **kwargs):
"""
Replaces the function that generates the prompt from the chat history.
Only used in chat mode.
"""
result = chat.generate_chat_prompt(user_input, state, **kwargs)
return result
def custom_css():
"""
Returns a CSS string that gets appended to the CSS for the webui.
"""
return ''
def custom_js():
"""
Returns a javascript string that gets appended to the javascript for the webui.
"""
return ''
def setup():
"""
Gets executed only once, when the extension is imported.
"""
pass
def ui():
"""
Gets executed when the UI is drawn. Custom gradio elements and their corresponding
event handlers should be defined here.
"""
pass

View File

@ -35,6 +35,15 @@ input_hijack = {
multimodal_embedder: MultimodalEmbedder = None multimodal_embedder: MultimodalEmbedder = None
def chat_input_modifier(text, visible_text, state):
global input_hijack
if input_hijack['state']:
input_hijack['state'] = False
return input_hijack['value'](text, visible_text)
else:
return text, visible_text
def add_chat_picture(picture, text, visible_text): def add_chat_picture(picture, text, visible_text):
# resize the image, so that shortest edge is at least 224 (size for CLIP), and at most 300 (to keep history manageable) # resize the image, so that shortest edge is at least 224 (size for CLIP), and at most 300 (to keep history manageable)
max_hw, min_hw = max(picture.size), min(picture.size) max_hw, min_hw = max(picture.size), min(picture.size)

View File

@ -9,8 +9,6 @@ from modules import chat, shared
from modules.ui import gather_interface_values from modules.ui import gather_interface_values
from modules.utils import gradio from modules.utils import gradio
# If 'state' is True, will hijack the next chat generation with
# custom input text given by 'value' in the format [text, visible_text]
input_hijack = { input_hijack = {
'state': False, 'state': False,
'value': ["", ""] 'value': ["", ""]
@ -20,6 +18,15 @@ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float32).to("cpu") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float32).to("cpu")
def chat_input_modifier(text, visible_text, state):
global input_hijack
if input_hijack['state']:
input_hijack['state'] = False
return input_hijack['value']
else:
return text, visible_text
def caption_image(raw_image): def caption_image(raw_image):
inputs = processor(raw_image.convert('RGB'), return_tensors="pt").to("cpu", torch.float32) inputs = processor(raw_image.convert('RGB'), return_tensors="pt").to("cpu", torch.float32)
out = model.generate(**inputs, max_new_tokens=100) out = model.generate(**inputs, max_new_tokens=100)
@ -42,7 +49,10 @@ def ui():
# Prepare the input hijack, update the interface values, call the generation function, and clear the picture # Prepare the input hijack, update the interface values, call the generation function, and clear the picture
picture_select.upload( picture_select.upload(
lambda picture, name1, name2: input_hijack.update({"state": True, "value": generate_chat_picture(picture, name1, name2)}), [picture_select, shared.gradio['name1'], shared.gradio['name2']], None).then( lambda picture, name1, name2: input_hijack.update({
"state": True,
"value": generate_chat_picture(picture, name1, name2)
}), [picture_select, shared.gradio['name1'], shared.gradio['name2']], None).then(
gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then( gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
chat.generate_chat_reply_wrapper, shared.input_params, gradio('display', 'history'), show_progress=False).then( chat.generate_chat_reply_wrapper, shared.input_params, gradio('display', 'history'), show_progress=False).then(
lambda: None, None, picture_select, show_progress=False) lambda: None, None, picture_select, show_progress=False)

View File

@ -16,6 +16,15 @@ params = {
} }
def chat_input_modifier(text, visible_text, state):
global input_hijack
if input_hijack['state']:
input_hijack['state'] = False
return input_hijack['value']
else:
return text, visible_text
def do_stt(audio, whipser_model, whipser_language): def do_stt(audio, whipser_model, whipser_language):
transcription = "" transcription = ""
r = sr.Recognizer() r = sr.Recognizer()
@ -56,6 +65,7 @@ def ui():
audio.change( audio.change(
auto_transcribe, [audio, auto_submit, whipser_model, whipser_language], [shared.gradio['textbox'], audio]).then( auto_transcribe, [audio, auto_submit, whipser_model, whipser_language], [shared.gradio['textbox'], audio]).then(
None, auto_submit, None, _js="(check) => {if (check) { document.getElementById('Generate').click() }}") None, auto_submit, None, _js="(check) => {if (check) { document.getElementById('Generate').click() }}")
whipser_model.change(lambda x: params.update({"whipser_model": x}), whipser_model, None) whipser_model.change(lambda x: params.update({"whipser_model": x}), whipser_model, None)
whipser_language.change(lambda x: params.update({"whipser_language": x}), whipser_language, None) whipser_language.change(lambda x: params.update({"whipser_language": x}), whipser_language, None)
auto_submit.change(lambda x: params.update({"auto_submit": x}), auto_submit, None) auto_submit.change(lambda x: params.update({"auto_submit": x}), auto_submit, None)

View File

@ -175,7 +175,7 @@ def chatbot_wrapper(text, state, regenerate=False, _continue=False, loading_mess
# Preparing the input # Preparing the input
if not any((regenerate, _continue)): if not any((regenerate, _continue)):
text, visible_text = apply_extensions('input_hijack', text, visible_text) text, visible_text = apply_extensions('chat_input', text, visible_text, state)
if visible_text is None: if visible_text is None:
visible_text = text visible_text = text

View File

@ -1,13 +1,12 @@
import traceback import traceback
from functools import partial from functools import partial
from inspect import signature
import gradio as gr import gradio as gr
import extensions import extensions
import modules.shared as shared import modules.shared as shared
from modules.logging_colors import logger from modules.logging_colors import logger
from inspect import signature
state = {} state = {}
available_extensions = [] available_extensions = []
@ -66,15 +65,11 @@ def _apply_string_extensions(function_name, text, state):
return text return text
# Input hijack of extensions # Extension functions that map string -> string
def _apply_input_hijack(text, visible_text): def _apply_chat_input_extensions(text, visible_text, state):
for extension, _ in iterator(): for extension, _ in iterator():
if hasattr(extension, 'input_hijack') and extension.input_hijack['state']: if hasattr(extension, 'chat_input_modifier'):
extension.input_hijack['state'] = False text, visible_text = extension.chat_input_modifier(text, visible_text, state)
if callable(extension.input_hijack['value']):
text, visible_text = extension.input_hijack['value'](text, visible_text)
else:
text, visible_text = extension.input_hijack['value']
return text, visible_text return text, visible_text
@ -120,7 +115,11 @@ def _apply_tokenizer_extensions(function_name, state, prompt, input_ids, input_e
def _apply_logits_processor_extensions(function_name, processor_list, input_ids): def _apply_logits_processor_extensions(function_name, processor_list, input_ids):
for extension, _ in iterator(): for extension, _ in iterator():
if hasattr(extension, function_name): if hasattr(extension, function_name):
getattr(extension, function_name)(processor_list, input_ids) result = getattr(extension, function_name)(processor_list, input_ids)
if type(result) is list:
processor_list = result
return processor_list
# Get prompt length in tokens after applying extension functions which override the default tokenizer output # Get prompt length in tokens after applying extension functions which override the default tokenizer output
@ -187,12 +186,12 @@ def create_extensions_tabs():
EXTENSION_MAP = { EXTENSION_MAP = {
"input": partial(_apply_string_extensions, "input_modifier"), "input": partial(_apply_string_extensions, "input_modifier"),
"output": partial(_apply_string_extensions, "output_modifier"), "output": partial(_apply_string_extensions, "output_modifier"),
"chat_input": _apply_chat_input_extensions,
"state": _apply_state_modifier_extensions, "state": _apply_state_modifier_extensions,
"history": _apply_history_modifier_extensions, "history": _apply_history_modifier_extensions,
"bot_prefix": partial(_apply_string_extensions, "bot_prefix_modifier"), "bot_prefix": partial(_apply_string_extensions, "bot_prefix_modifier"),
"tokenizer": partial(_apply_tokenizer_extensions, "tokenizer_modifier"), "tokenizer": partial(_apply_tokenizer_extensions, "tokenizer_modifier"),
'logits_processor': partial(_apply_logits_processor_extensions, 'logits_processor_modifier'), 'logits_processor': partial(_apply_logits_processor_extensions, 'logits_processor_modifier'),
"input_hijack": _apply_input_hijack,
"custom_generate_chat_prompt": _apply_custom_generate_chat_prompt, "custom_generate_chat_prompt": _apply_custom_generate_chat_prompt,
"custom_generate_reply": _apply_custom_generate_reply, "custom_generate_reply": _apply_custom_generate_reply,
"tokenized_length": _apply_custom_tokenized_length, "tokenized_length": _apply_custom_tokenized_length,