Add RWKV tokenizer

This commit is contained in:
oobabooga 2023-03-06 08:45:49 -03:00
parent c855b828fe
commit e91f4bc25a
3 changed files with 34 additions and 15 deletions

View File

@ -2,6 +2,7 @@ import os
from pathlib import Path
import numpy as np
from tokenizers import Tokenizer
import modules.shared as shared
@ -43,3 +44,22 @@ class RWKVModel:
)
return context+self.pipeline.generate(context, token_count=token_count, args=args, callback=callback)
class RWKVTokenizer:
def __init__(self):
pass
@classmethod
def from_pretrained(self, path):
tokenizer_path = path / "20B_tokenizer.json"
tokenizer = Tokenizer.from_file(os.path.abspath(tokenizer_path))
result = self()
result.tokenizer = tokenizer
return result
def encode(self, prompt):
return self.tokenizer.encode(prompt).ids
def decode(self, ids):
return self.tokenizer.decode(ids)

View File

@ -79,11 +79,12 @@ def load_model(model_name):
# RMKV model (not on HuggingFace)
elif shared.is_RWKV:
from modules.RWKV import RWKVModel
from modules.RWKV import RWKVModel, RWKVTokenizer
model = RWKVModel.from_pretrained(Path(f'models/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
tokenizer = RWKVTokenizer.from_pretrained(Path('models'))
return model, None
return model, tokenizer
# Custom
else:

View File

@ -21,21 +21,19 @@ def get_max_prompt_length(tokens):
return max_length
def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
# These models do not have explicit tokenizers for now, so
# we return an estimate for the number of tokens
if shared.is_RWKV:
return np.zeros((1, len(prompt)//4))
input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
if shared.args.cpu:
return input_ids
elif shared.args.flexgen:
return input_ids.numpy()
elif shared.args.deepspeed:
return input_ids.to(device=local_rank)
input_ids = shared.tokenizer.encode(str(prompt))
input_ids = np.array(input_ids).reshape(1, len(input_ids))
else:
return input_ids.cuda()
input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
if shared.args.cpu:
return input_ids
elif shared.args.flexgen:
return input_ids.numpy()
elif shared.args.deepspeed:
return input_ids.to(device=local_rank)
else:
return input_ids.cuda()
def decode(output_ids):
reply = shared.tokenizer.decode(output_ids, skip_special_tokens=True)