Merge remote-tracking branch 'refs/remotes/origin/dev' into dev

This commit is contained in:
oobabooga 2023-06-08 11:35:23 -03:00
commit e0b43102e6
4 changed files with 259 additions and 2 deletions

View File

@ -7,7 +7,7 @@ HOST = 'localhost:5000'
URI = f'http://{HOST}/api/v1/chat'
# For reverse-proxied streaming, the remote will likely host with ssl - https://
# URI = 'https://your-uri-here.trycloudflare.com/api/v1/generate'
# URI = 'https://your-uri-here.trycloudflare.com/api/v1/chat'
def run(user_input, history):

176
api-examples/api-example-model.py Executable file
View File

@ -0,0 +1,176 @@
#!/usr/bin/env python3
import requests
HOST = '0.0.0.0:5000'
def generate(prompt, tokens = 200):
request = { 'prompt': prompt, 'max_new_tokens': tokens }
response = requests.post(f'http://{HOST}/api/v1/generate', json=request)
if response.status_code == 200:
return response.json()['results'][0]['text']
def model_api(request):
response = requests.post(f'http://{HOST}/api/v1/model', json=request)
return response.json()
# print some common settings
def print_basic_model_info(response):
basic_settings = ['truncation_length', 'instruction_template']
print("Model: ", response['result']['model_name'])
print("Lora(s): ", response['result']['lora_names'])
for setting in basic_settings:
print(setting, "=", response['result']['shared.settings'][setting])
# model info
def model_info():
response = model_api({'action': 'info'})
print_basic_model_info(response)
# simple loader
def model_load(model_name):
return model_api({'action': 'load', 'model_name': model_name})
# complex loader
def complex_model_load(model):
def guess_groupsize(model_name):
if '1024g' in model_name:
return 1024
elif '128g' in model_name:
return 128
elif '32g' in model_name:
return 32
else:
return -1
req = {
'action': 'load',
'model_name': model,
'args': {
'gptq_for_llama': False, # Use AutoGPTQ by default, set to True for gptq-for-llama
'bf16': False,
'load_in_8bit': False,
'groupsize': 0,
'wbits': 0,
# llama.cpp
'threads': 0,
'n_batch': 512,
'no_mmap': False,
'mlock': False,
'cache_capacity': None,
'n_gpu_layers': 0,
'n_ctx': 2048,
# RWKV
'rwkv_strategy': None,
'rwkv_cuda_on': False,
# b&b 4-bit
#'load_in_4bit': False,
#'compute_dtype': 'float16',
#'quant_type': 'nf4',
#'use_double_quant': False,
#"cpu": false,
#"auto_devices": false,
#"gpu_memory": null,
#"cpu_memory": null,
#"disk": false,
#"disk_cache_dir": "cache",
},
}
model = model.lower()
if '4bit' in model or 'gptq' in model or 'int4' in model:
req['args']['wbits'] = 4
req['args']['groupsize'] = guess_groupsize(model)
elif '3bit' in model:
req['args']['wbits'] = 3
req['args']['groupsize'] = guess_groupsize(model)
else:
req['args']['gptq_for_llama'] = False
if '8bit' in model:
req['args']['load_in_8bit'] = True
elif '-hf' in model or 'fp16' in model:
if '7b' in model:
req['args']['bf16'] = True # for 24GB
elif '13b' in model:
req['args']['load_in_8bit'] = True # for 24GB
elif 'ggml' in model:
#req['args']['threads'] = 16
if '7b' in model:
req['args']['n_gpu_layers'] = 100
elif '13b' in model:
req['args']['n_gpu_layers'] = 100
elif '30b' in model or '33b' in model:
req['args']['n_gpu_layers'] = 59 # 24GB
elif '65b' in model:
req['args']['n_gpu_layers'] = 42 # 24GB
elif 'rwkv' in model:
req['args']['rwkv_cuda_on'] = True
if '14b' in model:
req['args']['rwkv_strategy'] = 'cuda f16i8' # 24GB
else:
req['args']['rwkv_strategy'] = 'cuda f16' # 24GB
return model_api(req)
if __name__ == '__main__':
for model in model_api({'action': 'list'})['result']:
try:
resp = complex_model_load(model)
if 'error' in resp:
print (f"{model} FAIL Error: {resp['error']['message']}")
continue
else:
print_basic_model_info(resp)
ans = generate("0,1,1,2,3,5,8,13,", tokens=2)
if '21' in ans:
print (f"{model} PASS ({ans})")
else:
print (f"{model} FAIL ({ans})")
except Exception as e:
print (f"{model} FAIL Exception: {repr(e)}")
# 0,1,1,2,3,5,8,13, is the fibonacci sequence, the next number is 21.
# Some results below.
""" $ ./model-api-example.py
Model: 4bit_gpt4-x-alpaca-13b-native-4bit-128g-cuda
Lora(s): []
truncation_length = 2048
instruction_template = Alpaca
4bit_gpt4-x-alpaca-13b-native-4bit-128g-cuda PASS (21)
Model: 4bit_WizardLM-13B-Uncensored-4bit-128g
Lora(s): []
truncation_length = 2048
instruction_template = WizardLM
4bit_WizardLM-13B-Uncensored-4bit-128g PASS (21)
Model: Aeala_VicUnlocked-alpaca-30b-4bit
Lora(s): []
truncation_length = 2048
instruction_template = Alpaca
Aeala_VicUnlocked-alpaca-30b-4bit PASS (21)
Model: alpaca-30b-4bit
Lora(s): []
truncation_length = 2048
instruction_template = Alpaca
alpaca-30b-4bit PASS (21)
"""

View File

@ -30,7 +30,15 @@ pip install protobuf==3.20.1
2. Use the script below to convert the model in `.pth` format that you, a fellow academic, downloaded using Meta's official link:
### [convert_llama_weights_to_hf.py](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py)
### Convert LLaMA to HuggingFace format
If you have `transformers` installed in place
```
python -m transformers.models.llama.convert_llama_weights_to_hf --input_dir /path/to/LLaMA --model_size 7B --output_dir /tmp/outputs/llama-7b
```
Otherwise download script [convert_llama_weights_to_hf.py](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py)
```
python convert_llama_weights_to_hf.py --input_dir /path/to/LLaMA --model_size 7B --output_dir /tmp/outputs/llama-7b

View File

@ -6,7 +6,19 @@ from extensions.api.util import build_parameters, try_start_cloudflared
from modules import shared
from modules.chat import generate_chat_reply
from modules.text_generation import encode, generate_reply, stop_everything_event
from modules.models import load_model, unload_model
from modules.LoRA import add_lora_to_model
from modules.utils import get_available_models
from server import get_model_specific_settings, update_model_parameters
def get_model_info():
return {
'model_name': shared.model_name,
'lora_names': shared.lora_names,
# dump
'shared.settings': shared.settings,
'shared.args': vars(shared.args),
}
class Handler(BaseHTTPRequestHandler):
def do_GET(self):
@ -91,6 +103,67 @@ class Handler(BaseHTTPRequestHandler):
self.wfile.write(response.encode('utf-8'))
elif self.path == '/api/v1/model':
self.send_response(200)
self.send_header('Content-Type', 'application/json')
self.end_headers()
# by default return the same as the GET interface
result = shared.model_name
# Actions: info, load, list, unload
action = body.get('action', '')
if action == 'load':
model_name = body['model_name']
args = body.get('args', {})
print('args', args)
for k in args:
setattr(shared.args, k, args[k])
shared.model_name = model_name
unload_model()
model_settings = get_model_specific_settings(shared.model_name)
shared.settings.update(model_settings)
update_model_parameters(model_settings, initial=True)
if shared.settings['mode'] != 'instruct':
shared.settings['instruction_template'] = None
try:
shared.model, shared.tokenizer = load_model(shared.model_name)
if shared.args.lora:
add_lora_to_model(shared.args.lora) # list
except Exception as e:
response = json.dumps({'error': { 'message': repr(e) } })
self.wfile.write(response.encode('utf-8'))
raise e
shared.args.model = shared.model_name
result = get_model_info()
elif action == 'unload':
unload_model()
shared.model_name = None
shared.args.model = None
result = get_model_info()
elif action == 'list':
result = get_available_models()
elif action == 'info':
result = get_model_info()
response = json.dumps({
'result': result,
})
self.wfile.write(response.encode('utf-8'))
elif self.path == '/api/v1/token-count':
self.send_response(200)
self.send_header('Content-Type', 'application/json')