diff --git a/README.md b/README.md index 5739d0ba..ad2ad1ed 100644 --- a/README.md +++ b/README.md @@ -279,6 +279,7 @@ Optionally, you can use the following command-line flags: | `--groupsize GROUPSIZE` | Group size. | | `--pre_layer PRE_LAYER [PRE_LAYER ...]` | The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg `--pre_layer 30 60`. | | `--checkpoint CHECKPOINT` | The path to the quantized checkpoint file. If not specified, it will be automatically detected. | +| `--monkey-patch` | Apply the monkey patch for using LoRAs with quantized models. #### DeepSpeed diff --git a/docs/GPTQ-models-(4-bit-mode).md b/docs/GPTQ-models-(4-bit-mode).md index b42f4224..428d7560 100644 --- a/docs/GPTQ-models-(4-bit-mode).md +++ b/docs/GPTQ-models-(4-bit-mode).md @@ -157,4 +157,31 @@ Output generated in 123.79 seconds (1.61 tokens/s, 199 tokens) You can also use multiple GPUs with `pre_layer` if using the oobabooga fork of GPTQ, eg `--pre_layer 30 60` will load a LLaMA-30B model half onto your first GPU and half onto your second, or `--pre_layer 20 40` will load 20 layers onto GPU-0, 20 layers onto GPU-1, and 20 layers offloaded to CPU. +### Using LoRAs with GPTQ-for-LLaMa + +This requires using a monkey patch that is supported by this web UI: https://github.com/johnsmith0031/alpaca_lora_4bit + +To use it: + +1. Clone `johnsmith0031/alpaca_lora_4bit` into the repositories folder: + +``` +cd text-generation-webui/repositories +git clone https://github.com/johnsmith0031/alpaca_lora_4bit +``` + +⚠️ I have tested it with the following commit specifically: `2f704b93c961bf202937b10aac9322b092afdce0` + +2. Install https://github.com/sterlind/GPTQ-for-LLaMa with this command: + +``` +pip install git+https://github.com/sterlind/GPTQ-for-LLaMa.git@lora_4bit +``` + +3. Start the UI with the `--monkey-patch` flag: + +``` +python server.py --model llama-7b-4bit-128g --listen --lora tloen_alpaca-lora-7b --monkey-patch +``` + diff --git a/docs/LoRA.md b/docs/LoRA.md index 02ce55be..f1504d10 100644 --- a/docs/LoRA.md +++ b/docs/LoRA.md @@ -11,6 +11,7 @@ This is the current state of LoRA integration in the web UI: | Transformers | Full support in 16-bit, `--load-in-8bit`, `--load-in-4bit`, and CPU modes. | | ExLlama | Single LoRA support. Fast to remove the LoRA afterwards. | | AutoGPTQ | Single LoRA support. Removing the LoRA requires reloading the entire model.| +| GPTQ-for-LLaMa | Full support with the [monkey patch](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#using-loras-with-gptq-for-llama). | ## Downloading a LoRA diff --git a/docs/Training-LoRAs.md b/docs/Training-LoRAs.md index bdc79992..83e6d5a7 100644 --- a/docs/Training-LoRAs.md +++ b/docs/Training-LoRAs.md @@ -131,6 +131,14 @@ So, in effect, Loss is a balancing game: you want to get it low enough that it u Note: if you see Loss start at or suddenly jump to exactly `0`, it is likely something has gone wrong in your training process (eg model corruption). +## Note: 4-Bit Monkeypatch + +The [4-bit LoRA monkeypatch](GPTQ-models-(4-bit-mode).md#using-loras-in-4-bit-mode) works for training, but has side effects: +- VRAM usage is higher currently. You can reduce the `Micro Batch Size` to `1` to compensate. +- Models do funky things. LoRAs apply themselves, or refuse to apply, or spontaneously error out, or etc. It can be helpful to reload base model or restart the WebUI between training/usage to minimize chances of anything going haywire. +- Loading or working with multiple LoRAs at the same time doesn't currently work. +- Generally, recognize and treat the monkeypatch as the dirty temporary hack it is - it works, but isn't very stable. It will get better in time when everything is merged upstream for full official support. + ## Legacy notes LoRA training was contributed by [mcmonkey4eva](https://github.com/mcmonkey4eva) in PR [#570](https://github.com/oobabooga/text-generation-webui/pull/570). diff --git a/modules/monkey_patch_gptq_lora.py b/modules/monkey_patch_gptq_lora.py new file mode 100644 index 00000000..bf8d478d --- /dev/null +++ b/modules/monkey_patch_gptq_lora.py @@ -0,0 +1,43 @@ +# Copied from https://github.com/johnsmith0031/alpaca_lora_4bit + +import sys +from pathlib import Path + +sys.path.insert(0, str(Path("repositories/alpaca_lora_4bit"))) + +import autograd_4bit +from amp_wrapper import AMPWrapper +from autograd_4bit import ( + Autograd4bitQuantLinear, + load_llama_model_4bit_low_ram +) +from monkeypatch.peft_tuners_lora_monkey_patch import ( + Linear4bitLt, + replace_peft_model_with_gptq_lora_model +) + +from modules import shared +from modules.GPTQ_loader import find_quantized_model_file + +replace_peft_model_with_gptq_lora_model() + + +def load_model_llama(model_name): + config_path = str(Path(f'{shared.args.model_dir}/{model_name}')) + model_path = str(find_quantized_model_file(model_name)) + model, tokenizer = load_llama_model_4bit_low_ram(config_path, model_path, groupsize=shared.args.groupsize, is_v1_model=False) + for n, m in model.named_modules(): + if isinstance(m, Autograd4bitQuantLinear) or isinstance(m, Linear4bitLt): + if m.is_v1_model: + m.zeros = m.zeros.half() + m.scales = m.scales.half() + m.bias = m.bias.half() + + autograd_4bit.use_new = True + autograd_4bit.auto_switch = True + + model.half() + wrapper = AMPWrapper(model) + wrapper.apply_generate() + + return model, tokenizer diff --git a/modules/training.py b/modules/training.py index fa721ff0..7558cd5d 100644 --- a/modules/training.py +++ b/modules/training.py @@ -270,6 +270,12 @@ def calc_trainable_parameters(model): def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch_size: int, batch_size: int, epochs: int, learning_rate: str, lr_scheduler_type: str, lora_rank: int, lora_alpha: int, lora_dropout: float, cutoff_len: int, dataset: str, eval_dataset: str, format: str, eval_steps: int, raw_text_file: str, overlap_len: int, newline_favor_len: int, higher_rank_limit: bool, warmup_steps: int, optimizer: str, hard_cut_string: str, train_only_after: str, stop_at_loss: float, add_eos_token: bool, min_chars: int, report_to: str): + if shared.args.monkey_patch: + from monkeypatch.peft_tuners_lora_monkey_patch import ( + replace_peft_model_with_gptq_lora_model + ) + replace_peft_model_with_gptq_lora_model() + global WANT_INTERRUPT WANT_INTERRUPT = False @@ -301,6 +307,15 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch time.sleep(5) + if shared.args.wbits > 0 and not shared.args.monkey_patch: + yield "LoRA training with GPTQ models requires loading with `--monkey-patch`" + return + + elif not (shared.args.load_in_8bit or shared.args.load_in_4bit) and shared.args.wbits <= 0: + yield "It is highly recommended you use `--load-in-8bit` for LoRA training. *(Will continue anyway in 2 seconds, press `Interrupt` to stop.)*" + logger.warning("It is highly recommended you use `--load-in-8bit` for LoRA training.") + time.sleep(2) # Give it a moment for the message to show in UI before continuing + if cutoff_len <= 0 or micro_batch_size <= 0 or batch_size <= 0 or actual_lr <= 0 or lora_rank <= 0 or lora_alpha <= 0: yield "Cannot input zeroes." return @@ -505,6 +520,14 @@ def do_train(lora_name: str, always_override: bool, save_steps: int, micro_batch yield traceback.format_exc().replace('\n', '\n\n') return + if shared.args.monkey_patch: + for n, m in lora_model.named_modules(): + if '4bit' in str(type(m)): + if m.is_v1_model: + m.zeros = m.zeros.half() + + m.scales = m.scales.half() + class Tracked(): def __init__(self): self.current_steps = 0