Add support for presets

This commit is contained in:
oobabooga 2023-01-06 01:33:21 -03:00
parent 874cd6ff3f
commit c65bad40dc
4 changed files with 31 additions and 27 deletions

View File

@ -63,6 +63,10 @@ If I get enough ⭐s on this repository, I will make the process of loading mode
Then browse to `http://localhost:7860/?__theme=dark`
## Presets
Inference settings presets can be created under `presets/` as text files. These files are detected automatically at startup.
## Contributing
Pull requests are welcome.

5
presets/Default.txt Normal file
View File

@ -0,0 +1,5 @@
do_sample=True,
max_new_tokens=max_length,
top_p=1,
typical_p=0.3,
temperature=temperature,

10
presets/Verbose.txt Normal file
View File

@ -0,0 +1,10 @@
num_beams=10,
min_length=max_length,
max_new_tokens=max_length,
length_penalty =1.4,
no_repeat_ngram_size=2,
early_stopping=True,
temperature=0.7,
top_k=150,
top_p=0.92,
repetition_penalty=4.5,

View File

@ -1,5 +1,6 @@
import time
import re
import time
import glob
import torch
import gradio as gr
import transformers
@ -16,6 +17,8 @@ model_name = 'galactica-6.7b'
#model_name = 'flan-t5'
#model_name = 'OPT-13B-Erebus'
settings_name = "Default"
def load_model(model_name):
print(f"Loading {model_name}")
@ -48,7 +51,7 @@ def fix_gpt4chan(s):
return s
def fn(question, temperature, max_length, inference_settings, selected_model):
global model, tokenizer, model_name
global model, tokenizer, model_name, settings_name
if selected_model != model_name:
model_name = selected_model
@ -56,35 +59,17 @@ def fn(question, temperature, max_length, inference_settings, selected_model):
tokenier = None
torch.cuda.empty_cache()
model, tokenizer = load_model(model_name)
if inference_settings != settings_name:
with open(f'presets/{inference_settings}.txt', 'r') as infile:
preset = infile.read()
settings_name = inference_settings
torch.cuda.empty_cache()
input_text = question
input_ids = tokenizer.encode(str(input_text), return_tensors='pt').cuda()
if inference_settings == 'Default':
output = model.generate(
input_ids,
do_sample=True,
max_new_tokens=max_length,
#max_length=max_length+len(input_ids[0]),
top_p=1,
typical_p=0.3,
temperature=temperature,
).cuda()
elif inference_settings == 'Verbose':
output = model.generate(
input_ids,
num_beams=10,
min_length=max_length,
max_new_tokens=max_length,
length_penalty =1.4,
no_repeat_ngram_size=2,
early_stopping=True,
temperature=0.7,
top_k=150,
top_p=0.92,
repetition_penalty=4.5,
).cuda()
output = eval(f"model.generate(input_ids, {preset}).cuda()")
reply = tokenizer.decode(output[0], skip_special_tokens=True)
if model_name.startswith('gpt4chan'):
@ -104,7 +89,7 @@ interface = gr.Interface(
gr.Textbox(value=default_text, lines=15),
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Temperature', value=0.7),
gr.Slider(minimum=1, maximum=2000, step=1, label='max_length', value=200),
gr.Dropdown(choices=["Default", "Verbose"], value="Default"),
gr.Dropdown(choices=list(map(lambda x : x.split('/')[-1].split('.')[0], glob.glob("presets/*.txt"))), value="Default"),
gr.Dropdown(choices=["gpt4chan_model_float16", "galactica-6.7b", "opt-6.7b", "opt-13b", "gpt-neox-20b", "gpt-j-6B-float16", "flan-t5", "bloomz-7b1-p3", "OPT-13B-Erebus"], value=model_name),
],
outputs=[