mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-10-01 01:26:03 -04:00
Move towards HF LLaMA implementation
This commit is contained in:
parent
bd8aac8fa4
commit
c33715ad5b
@ -1,96 +0,0 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
||||
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
from pathlib import Path
|
||||
from typing import Tuple
|
||||
|
||||
import fire
|
||||
import torch
|
||||
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
|
||||
from llama import LLaMA, ModelArgs, Tokenizer, Transformer
|
||||
|
||||
os.environ['RANK'] = '0'
|
||||
os.environ['WORLD_SIZE'] = '1'
|
||||
os.environ['MP'] = '1'
|
||||
os.environ['MASTER_ADDR'] = '127.0.0.1'
|
||||
os.environ['MASTER_PORT'] = '2223'
|
||||
|
||||
def setup_model_parallel() -> Tuple[int, int]:
|
||||
local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
||||
world_size = int(os.environ.get("WORLD_SIZE", -1))
|
||||
|
||||
torch.distributed.init_process_group("gloo")
|
||||
initialize_model_parallel(world_size)
|
||||
torch.cuda.set_device(local_rank)
|
||||
|
||||
# seed must be the same in all processes
|
||||
torch.manual_seed(1)
|
||||
return local_rank, world_size
|
||||
|
||||
def load(
|
||||
ckpt_dir: str,
|
||||
tokenizer_path: str,
|
||||
local_rank: int,
|
||||
world_size: int,
|
||||
max_seq_len: int,
|
||||
max_batch_size: int,
|
||||
) -> LLaMA:
|
||||
start_time = time.time()
|
||||
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
||||
assert world_size == len(
|
||||
checkpoints
|
||||
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {world_size}"
|
||||
ckpt_path = checkpoints[local_rank]
|
||||
print("Loading")
|
||||
checkpoint = torch.load(ckpt_path, map_location="cpu")
|
||||
with open(Path(ckpt_dir) / "params.json", "r") as f:
|
||||
params = json.loads(f.read())
|
||||
|
||||
model_args: ModelArgs = ModelArgs(
|
||||
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
|
||||
)
|
||||
tokenizer = Tokenizer(model_path=tokenizer_path)
|
||||
model_args.vocab_size = tokenizer.n_words
|
||||
torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
||||
model = Transformer(model_args)
|
||||
torch.set_default_tensor_type(torch.FloatTensor)
|
||||
model.load_state_dict(checkpoint, strict=False)
|
||||
|
||||
generator = LLaMA(model, tokenizer)
|
||||
print(f"Loaded in {time.time() - start_time:.2f} seconds")
|
||||
return generator
|
||||
|
||||
|
||||
class LLaMAModel:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(self, path, max_seq_len=2048, max_batch_size=1):
|
||||
tokenizer_path = path / "tokenizer.model"
|
||||
path = os.path.abspath(path)
|
||||
tokenizer_path = os.path.abspath(tokenizer_path)
|
||||
|
||||
local_rank, world_size = setup_model_parallel()
|
||||
if local_rank > 0:
|
||||
sys.stdout = open(os.devnull, "w")
|
||||
|
||||
generator = load(
|
||||
path, tokenizer_path, local_rank, world_size, max_seq_len, max_batch_size
|
||||
)
|
||||
|
||||
result = self()
|
||||
result.pipeline = generator
|
||||
return result
|
||||
|
||||
def generate(self, prompt, token_count=512, temperature=0.8, top_p=0.95):
|
||||
|
||||
results = self.pipeline.generate(
|
||||
[prompt], max_gen_len=token_count, temperature=temperature, top_p=top_p
|
||||
)
|
||||
|
||||
return results[0]
|
@ -1,125 +0,0 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
|
||||
|
||||
from typing import Tuple
|
||||
import os
|
||||
import sys
|
||||
import torch
|
||||
import fire
|
||||
import time
|
||||
import json
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
|
||||
|
||||
from repositories.llama_int8.llama import ModelArgs, Transformer, Tokenizer, LLaMA
|
||||
|
||||
|
||||
def setup_model_parallel() -> Tuple[int, int]:
|
||||
local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
||||
world_size = int(os.environ.get("WORLD_SIZE", -1))
|
||||
|
||||
torch.distributed.init_process_group("nccl")
|
||||
initialize_model_parallel(world_size)
|
||||
torch.cuda.set_device(local_rank)
|
||||
|
||||
# seed must be the same in all processes
|
||||
torch.manual_seed(1)
|
||||
return local_rank, world_size
|
||||
|
||||
|
||||
def load(
|
||||
ckpt_dir: str,
|
||||
tokenizer_path: str,
|
||||
max_seq_len: int,
|
||||
max_batch_size: int,
|
||||
) -> LLaMA:
|
||||
start_time = time.time()
|
||||
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
||||
|
||||
with open(Path(ckpt_dir) / "params.json", "r") as f:
|
||||
params = json.loads(f.read())
|
||||
|
||||
model_args: ModelArgs = ModelArgs(
|
||||
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
|
||||
)
|
||||
tokenizer = Tokenizer(model_path=tokenizer_path)
|
||||
model_args.vocab_size = tokenizer.n_words
|
||||
# torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
||||
torch.set_default_tensor_type(torch.HalfTensor)
|
||||
print("Creating transformer")
|
||||
model = Transformer(model_args)
|
||||
print("Transformer created")
|
||||
|
||||
key_to_dim = {
|
||||
"w1": 0,
|
||||
"w2": -1,
|
||||
"w3": 0,
|
||||
"wo": -1,
|
||||
"wq": 0,
|
||||
"wk": 0,
|
||||
"wv": 0,
|
||||
"output": 0,
|
||||
"tok_embeddings": -1,
|
||||
"ffn_norm": None,
|
||||
"attention_norm": None,
|
||||
"norm": None,
|
||||
"rope": None,
|
||||
}
|
||||
|
||||
# ?
|
||||
torch.set_default_tensor_type(torch.FloatTensor)
|
||||
|
||||
# load the state dict incrementally, to avoid memory problems
|
||||
for i, ckpt in enumerate(checkpoints):
|
||||
print(f"Loading checkpoint {i}")
|
||||
checkpoint = torch.load(ckpt, map_location="cpu")
|
||||
for parameter_name, parameter in model.named_parameters():
|
||||
short_name = parameter_name.split(".")[-2]
|
||||
if key_to_dim[short_name] is None and i == 0:
|
||||
parameter.data = checkpoint[parameter_name]
|
||||
elif key_to_dim[short_name] == 0:
|
||||
size = checkpoint[parameter_name].size(0)
|
||||
parameter.data[size * i : size * (i + 1), :] = checkpoint[
|
||||
parameter_name
|
||||
]
|
||||
elif key_to_dim[short_name] == -1:
|
||||
size = checkpoint[parameter_name].size(-1)
|
||||
parameter.data[:, size * i : size * (i + 1)] = checkpoint[
|
||||
parameter_name
|
||||
]
|
||||
del checkpoint
|
||||
|
||||
# model.load_state_dict(checkpoint, strict=False)
|
||||
model.quantize()
|
||||
|
||||
generator = LLaMA(model, tokenizer)
|
||||
print(f"Loaded in {time.time() - start_time:.2f} seconds")
|
||||
return generator
|
||||
|
||||
|
||||
class LLaMAModel_8bit:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(self, path, max_seq_len=2048, max_batch_size=1):
|
||||
tokenizer_path = path / "tokenizer.model"
|
||||
path = os.path.abspath(path)
|
||||
tokenizer_path = os.path.abspath(tokenizer_path)
|
||||
|
||||
generator = load(path, tokenizer_path, max_seq_len, max_batch_size)
|
||||
|
||||
result = self()
|
||||
result.pipeline = generator
|
||||
return result
|
||||
|
||||
def generate(self, prompt, token_count=512, temperature=0.8, top_p=0.95):
|
||||
|
||||
results = self.pipeline.generate(
|
||||
[prompt], max_gen_len=token_count, temperature=temperature, top_p=top_p
|
||||
)
|
||||
|
||||
return results[0]
|
||||
|
@ -39,10 +39,9 @@ def load_model(model_name):
|
||||
t0 = time.time()
|
||||
|
||||
shared.is_RWKV = model_name.lower().startswith('rwkv-')
|
||||
shared.is_LLaMA = model_name.lower().startswith('llama-')
|
||||
|
||||
# Default settings
|
||||
if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen or shared.is_RWKV or shared.is_LLaMA):
|
||||
if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen or shared.is_RWKV):
|
||||
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
|
||||
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
|
||||
else:
|
||||
@ -86,23 +85,6 @@ def load_model(model_name):
|
||||
|
||||
return model, None
|
||||
|
||||
# LLaMA model (not on HuggingFace)
|
||||
elif shared.is_LLaMA:
|
||||
if shared.args.load_in_8bit:
|
||||
import modules.LLaMA_8bit
|
||||
from modules.LLaMA_8bit import LLaMAModel_8bit
|
||||
|
||||
model = LLaMAModel_8bit.from_pretrained(Path(f'models/{model_name}'))
|
||||
|
||||
return model, None
|
||||
else:
|
||||
import modules.LLaMA
|
||||
from modules.LLaMA import LLaMAModel
|
||||
|
||||
model = LLaMAModel.from_pretrained(Path(f'models/{model_name}'))
|
||||
|
||||
return model, None
|
||||
|
||||
# Custom
|
||||
else:
|
||||
command = "AutoModelForCausalLM.from_pretrained"
|
||||
|
@ -6,7 +6,6 @@ model_name = ""
|
||||
soft_prompt_tensor = None
|
||||
soft_prompt = False
|
||||
is_RWKV = False
|
||||
is_LLaMA = False
|
||||
|
||||
# Chat variables
|
||||
history = {'internal': [], 'visible': []}
|
||||
@ -43,7 +42,6 @@ settings = {
|
||||
'default': 'NovelAI-Sphinx Moth',
|
||||
'pygmalion-*': 'Pygmalion',
|
||||
'RWKV-*': 'Naive',
|
||||
'llama-*': 'Naive',
|
||||
'(rosey|chip|joi)_.*_instruct.*': 'Instruct Joi (Contrastive Search)'
|
||||
},
|
||||
'prompts': {
|
||||
|
@ -24,7 +24,7 @@ def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
|
||||
|
||||
# These models do not have explicit tokenizers for now, so
|
||||
# we return an estimate for the number of tokens
|
||||
if shared.is_RWKV or shared.is_LLaMA:
|
||||
if shared.is_RWKV:
|
||||
return np.zeros((1, len(prompt)//4))
|
||||
|
||||
input_ids = shared.tokenizer.encode(str(prompt), return_tensors='pt', truncation=True, max_length=get_max_prompt_length(tokens_to_generate), add_special_tokens=add_special_tokens)
|
||||
@ -90,7 +90,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
|
||||
|
||||
# These models are not part of Hugging Face, so we handle them
|
||||
# separately and terminate the function call earlier
|
||||
if shared.is_RWKV or shared.is_LLaMA:
|
||||
if shared.is_RWKV:
|
||||
if shared.args.no_stream:
|
||||
reply = shared.model.generate(question, token_count=max_new_tokens, temperature=temperature, top_p=top_p)
|
||||
t1 = time.time()
|
||||
|
@ -5,4 +5,4 @@ gradio==3.18.0
|
||||
numpy
|
||||
rwkv==0.0.6
|
||||
safetensors==0.2.8
|
||||
git+https://github.com/huggingface/transformers
|
||||
git+https://github.com/oobabooga/transformers@llama_push
|
||||
|
Loading…
Reference in New Issue
Block a user