Clean up some chat functions

This commit is contained in:
oobabooga 2023-02-24 08:31:30 -03:00
parent 9ae063e42b
commit c2f4c395b9

View File

@ -24,26 +24,23 @@ def clean_chat_message(text):
text = text.strip()
return text
def generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size, impersonate=False):
text = clean_chat_message(text)
def generate_chat_prompt(user_input, tokens, name1, name2, context, chat_prompt_size, impersonate=False):
user_input = clean_chat_message(user_input)
rows = [f"{context.strip()}\n"]
i = len(shared.history['internal'])-1
count = 0
if shared.soft_prompt:
chat_prompt_size -= shared.soft_prompt_tensor.shape[1]
chat_prompt_size -= shared.soft_prompt_tensor.shape[1]
max_length = min(get_max_prompt_length(tokens), chat_prompt_size)
i = len(shared.history['internal'])-1
while i >= 0 and len(encode(''.join(rows), tokens)[0]) < max_length:
rows.insert(1, f"{name2}: {shared.history['internal'][i][1].strip()}\n")
count += 1
if not (shared.history['internal'][i][0] == '<|BEGIN-VISIBLE-CHAT|>'):
rows.insert(1, f"{name1}: {shared.history['internal'][i][0].strip()}\n")
count += 1
i -= 1
if not impersonate:
rows.append(f"{name1}: {text}\n")
rows.append(f"{name1}: {user_input}\n")
rows.append(apply_extensions(f"{name2}:", "bot_prefix"))
limit = 3
else:
@ -52,10 +49,9 @@ def generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size,
while len(rows) > limit and len(encode(''.join(rows), tokens)[0]) >= max_length:
rows.pop(1)
rows.pop(1)
question = ''.join(rows)
return question
prompt = ''.join(rows)
return prompt
def extract_message_from_reply(question, reply, current, other, check, extensions=False):
next_character_found = False
@ -101,23 +97,27 @@ def stop_everything_event():
def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, name1, name2, context, check, chat_prompt_size, picture=None):
shared.stop_everything = False
just_started = True
eos_token = '\n' if check else None
if 'pygmalion' in shared.model_name.lower():
name1 = "You"
# Create the prompt
if shared.args.picture and picture is not None:
text, visible_text = generate_chat_picture(picture, name1, name2)
else:
visible_text = text
if shared.args.chat:
visible_text = visible_text.replace('\n', '<br>')
text = apply_extensions(text, "input")
question = generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size)
eos_token = '\n' if check else None
first = True
for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):
reply, next_character_found, substring_found = extract_message_from_reply(question, reply, name2, name1, check, extensions=True)
prompt = generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size)
# Generate
for reply in generate_reply(prompt, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name1}:"):
# Extracting the reply
reply, next_character_found, substring_found = extract_message_from_reply(prompt, reply, name2, name1, check, extensions=True)
visible_reply = apply_extensions(reply, "output")
if shared.args.chat:
visible_reply = visible_reply.replace('\n', '<br>')
@ -126,9 +126,8 @@ def chatbot_wrapper(text, tokens, do_sample, max_new_tokens, temperature, top_p,
# otherwise gradio gets confused
if shared.stop_everything:
return shared.history['visible']
if first:
first = False
if just_started:
just_started = False
shared.history['internal'].append(['', ''])
shared.history['visible'].append(['', ''])
@ -144,10 +143,10 @@ def impersonate_wrapper(text, tokens, do_sample, max_new_tokens, temperature, to
if 'pygmalion' in shared.model_name.lower():
name1 = "You"
question = generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size, impersonate=True)
prompt = generate_chat_prompt(text, tokens, name1, name2, context, chat_prompt_size, impersonate=True)
eos_token = '\n' if check else None
for reply in generate_reply(question, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
reply, next_character_found, substring_found = extract_message_from_reply(question, reply, name1, name2, check, extensions=False)
for reply in generate_reply(prompt, tokens, do_sample, max_new_tokens, temperature, top_p, typical_p, repetition_penalty, top_k, min_length, no_repeat_ngram_size, num_beams, penalty_alpha, length_penalty, early_stopping, eos_token=eos_token, stopping_string=f"\n{name2}:"):
reply, next_character_found, substring_found = extract_message_from_reply(prompt, reply, name1, name2, check, extensions=False)
if not substring_found:
yield reply
if next_character_found: