mirror of
https://github.com/oobabooga/text-generation-webui.git
synced 2024-10-01 01:26:03 -04:00
Merge remote-tracking branch 'refs/remotes/origin/main'
This commit is contained in:
commit
b8d2f6d876
@ -97,7 +97,7 @@ cd text-generation-webui
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
#### 4. Install GPTQ-for-LLaMa and the monkey patch
|
||||
#### 4. Install GPTQ
|
||||
|
||||
The base installation covers [transformers](https://github.com/huggingface/transformers) models (`AutoModelForCausalLM` and `AutoModelForSeq2SeqLM` specifically) and [llama.cpp](https://github.com/ggerganov/llama.cpp) (GGML) models.
|
||||
|
||||
|
@ -1,12 +1,56 @@
|
||||
In 4-bit mode, models are loaded with just 25% of their regular VRAM usage. So LLaMA-7B fits into a 6GB GPU, and LLaMA-30B fits into a 24GB GPU.
|
||||
|
||||
This is possible thanks to [@qwopqwop200](https://github.com/qwopqwop200/GPTQ-for-LLaMa)'s adaptation of the GPTQ algorithm for LLaMA: https://github.com/qwopqwop200/GPTQ-for-LLaMa
|
||||
|
||||
GPTQ is a clever quantization algorithm that lightly reoptimizes the weights during quantization so that the accuracy loss is compensated relative to a round-to-nearest quantization. See the paper for more details: https://arxiv.org/abs/2210.17323
|
||||
|
||||
## GPTQ-for-LLaMa branches
|
||||
## AutoGPTQ
|
||||
|
||||
Different branches of GPTQ-for-LLaMa are available:
|
||||
AutoGPTQ is the recommended way to create new quantized models: https://github.com/PanQiWei/AutoGPTQ
|
||||
|
||||
### Installation
|
||||
|
||||
To load a model quantized with AutoGPTQ in the web UI, manual installation is currently necessary:
|
||||
|
||||
```
|
||||
conda activate textgen
|
||||
git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ
|
||||
pip install .
|
||||
```
|
||||
|
||||
You are going to need to have `nvcc` installed (see the [instructions below](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#step-0-install-nvcc)).
|
||||
|
||||
### Usage
|
||||
|
||||
Place the output folder generated by AutoGPTQ in your `models/` folder and load it with the `--autogptq` flag:
|
||||
|
||||
```
|
||||
python server.py --autogptq --model model_name
|
||||
```
|
||||
|
||||
Alternatively, check the `autogptq` box in the "Model" tab of the UI before loading the model.
|
||||
|
||||
### Offloading
|
||||
|
||||
In order to do CPU offloading or multi-gpu inference with AutoGPTQ, use the `--gpu-memory` flag. It is currently somewhat slower than offloading with the `--pre_layer` option in GPTQ-for-LLaMA (more on that below).
|
||||
|
||||
For CPU offloading:
|
||||
|
||||
```
|
||||
python server.py --autogptq --gpu-memory 3000MiB --model model_name
|
||||
```
|
||||
|
||||
For multi-GPU:
|
||||
|
||||
```
|
||||
python server.py --autogptq --gpu-memory 3000MiB 6000MiB --model model_name
|
||||
```
|
||||
|
||||
### Using LoRAs with AutoGPTQ
|
||||
|
||||
Not supported yet.
|
||||
|
||||
## GPTQ-for-LLaMa
|
||||
|
||||
GPTQ-for-LLaMa is the original adaptation of GPTQ for the LLaMA model. It was made by [@qwopqwop200](https://github.com/qwopqwop200/GPTQ-for-LLaMa) in this repository: https://github.com/qwopqwop200/GPTQ-for-LLaMa
|
||||
|
||||
Different branches of GPTQ-for-LLaMa are currently available, including:
|
||||
|
||||
| Branch | Comment |
|
||||
|----|----|
|
||||
@ -16,9 +60,13 @@ Different branches of GPTQ-for-LLaMa are available:
|
||||
|
||||
Overall, I recommend using the old CUDA branch. It is included by default in the one-click-installer for this web UI.
|
||||
|
||||
## Installation
|
||||
### Installation using precompiled wheels
|
||||
|
||||
### Step 0: install nvcc
|
||||
https://github.com/jllllll/GPTQ-for-LLaMa-Wheels
|
||||
|
||||
### Manual installation
|
||||
|
||||
#### Step 0: install nvcc
|
||||
|
||||
```
|
||||
conda activate textgen
|
||||
@ -29,7 +77,7 @@ The command above takes some 10 minutes to run and shows no progress bar or upda
|
||||
|
||||
See this issue for more details: https://github.com/oobabooga/text-generation-webui/issues/416#issuecomment-1475078571
|
||||
|
||||
### Step 1: install GPTQ-for-LLaMa
|
||||
#### Step 1: install GPTQ-for-LLaMa
|
||||
|
||||
Clone the GPTQ-for-LLaMa repository into the `text-generation-webui/repositories` subfolder and install it:
|
||||
|
||||
@ -64,14 +112,14 @@ git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa.git -b triton
|
||||
|
||||
https://github.com/qwopqwop200/GPTQ-for-LLaMa
|
||||
|
||||
### Step 2: get the pre-converted weights
|
||||
#### Step 2: get the pre-converted weights
|
||||
|
||||
* Converted without `group-size` (better for the 7b model): https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483891617
|
||||
* Converted with `group-size` (better from 13b upwards): https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483941105
|
||||
|
||||
⚠️ The tokenizer files in the sources above may be outdated. Make sure to obtain the universal LLaMA tokenizer as described [here](https://github.com/oobabooga/text-generation-webui/blob/main/docs/LLaMA-model.md#option-1-pre-converted-weights).
|
||||
|
||||
### Step 3: Start the web UI:
|
||||
#### Step 3: Start the web UI:
|
||||
|
||||
For the models converted without `group-size`:
|
||||
|
||||
@ -91,7 +139,7 @@ The command-line flags `--wbits` and `--groupsize` are automatically detected ba
|
||||
python server.py --model llama-13b-4bit-128g --wbits 4 --groupsize 128
|
||||
```
|
||||
|
||||
## CPU offloading
|
||||
### CPU offloading
|
||||
|
||||
It is possible to offload part of the layers of the 4-bit model to the CPU with the `--pre_layer` flag. The higher the number after `--pre_layer`, the more layers will be allocated to the GPU.
|
||||
|
||||
@ -109,20 +157,13 @@ Output generated in 123.79 seconds (1.61 tokens/s, 199 tokens)
|
||||
|
||||
You can also use multiple GPUs with `pre_layer` if using the oobabooga fork of GPTQ, eg `--pre_layer 30 60` will load a LLaMA-30B model half onto your first GPU and half onto your second, or `--pre_layer 20 40` will load 20 layers onto GPU-0, 20 layers onto GPU-1, and 20 layers offloaded to CPU.
|
||||
|
||||
## Using LoRAs in 4-bit mode
|
||||
### Using LoRAs with GPTQ-for-LLaMa
|
||||
|
||||
At the moment, this feature is not officially supported by the relevant libraries, but a patch exists and is supported by this web UI: https://github.com/johnsmith0031/alpaca_lora_4bit
|
||||
This requires using a monkey patch that is supported by this web UI: https://github.com/johnsmith0031/alpaca_lora_4bit
|
||||
|
||||
In order to use it:
|
||||
To use it:
|
||||
|
||||
1. Make sure that your requirements are up to date:
|
||||
|
||||
```
|
||||
cd text-generation-webui
|
||||
pip install -r requirements.txt --upgrade
|
||||
```
|
||||
|
||||
2. Clone `johnsmith0031/alpaca_lora_4bit` into the repositories folder:
|
||||
1. Clone `johnsmith0031/alpaca_lora_4bit` into the repositories folder:
|
||||
|
||||
```
|
||||
cd text-generation-webui/repositories
|
||||
@ -131,13 +172,13 @@ git clone https://github.com/johnsmith0031/alpaca_lora_4bit
|
||||
|
||||
⚠️ I have tested it with the following commit specifically: `2f704b93c961bf202937b10aac9322b092afdce0`
|
||||
|
||||
3. Install https://github.com/sterlind/GPTQ-for-LLaMa with this command:
|
||||
2. Install https://github.com/sterlind/GPTQ-for-LLaMa with this command:
|
||||
|
||||
```
|
||||
pip install git+https://github.com/sterlind/GPTQ-for-LLaMa.git@lora_4bit
|
||||
```
|
||||
|
||||
4. Start the UI with the `--monkey-patch` flag:
|
||||
3. Start the UI with the `--monkey-patch` flag:
|
||||
|
||||
```
|
||||
python server.py --model llama-7b-4bit-128g --listen --lora tloen_alpaca-lora-7b --monkey-patch
|
||||
|
@ -259,7 +259,7 @@ class Handler(BaseHTTPRequestHandler):
|
||||
|
||||
role_formats = {
|
||||
'user': 'user: {message}\n',
|
||||
'bot': 'assistant: {message}\n',
|
||||
'assistant': 'assistant: {message}\n',
|
||||
'system': '{message}',
|
||||
'context': 'You are a helpful assistant. Answer as concisely as possible.',
|
||||
'prompt': 'assistant:',
|
||||
|
Loading…
Reference in New Issue
Block a user