Remove "eval" statements from text generation functions

This commit is contained in:
oobabooga 2023-03-14 16:04:17 -03:00 committed by GitHub
parent 5c0522307f
commit afc5339510
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -122,7 +122,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
input_ids = encode(question, max_new_tokens)
original_input_ids = input_ids
output = input_ids[0]
cuda = "" if (shared.args.cpu or shared.args.deepspeed or shared.args.flexgen) else ".cuda()"
cuda = not any((shared.args.cpu, shared.args.deepspeed, shared.args.flexgen))
eos_token_ids = [shared.tokenizer.eos_token_id] if shared.tokenizer.eos_token_id is not None else []
if eos_token is not None:
eos_token_ids.append(int(encode(eos_token)[0][-1]))
@ -132,45 +132,48 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
t = encode(stopping_string, 0, add_special_tokens=False)
stopping_criteria_list.append(_SentinelTokenStoppingCriteria(sentinel_token_ids=t, starting_idx=len(input_ids[0])))
generate_params = {}
if not shared.args.flexgen:
generate_params = [
f"max_new_tokens=max_new_tokens",
f"eos_token_id={eos_token_ids}",
f"stopping_criteria=stopping_criteria_list",
f"do_sample={do_sample}",
f"temperature={temperature}",
f"top_p={top_p}",
f"typical_p={typical_p}",
f"repetition_penalty={repetition_penalty}",
f"top_k={top_k}",
f"min_length={min_length if shared.args.no_stream else 0}",
f"no_repeat_ngram_size={no_repeat_ngram_size}",
f"num_beams={num_beams}",
f"penalty_alpha={penalty_alpha}",
f"length_penalty={length_penalty}",
f"early_stopping={early_stopping}",
]
generate_params.update({
"max_new_tokens": max_new_tokens,
"eos_token_id": eos_token_ids,
"stopping_criteria": stopping_criteria_list,
"do_sample": do_sample,
"temperature": temperature,
"top_p": top_p,
"typical_p": typical_p,
"repetition_penalty": repetition_penalty,
"top_k": top_k,
"min_length": min_length if shared.args.no_stream else 0,
"no_repeat_ngram_size": no_repeat_ngram_size,
"num_beams": num_beams,
"penalty_alpha": penalty_alpha,
"length_penalty": length_penalty,
"early_stopping": early_stopping,
})
else:
generate_params = [
f"max_new_tokens={max_new_tokens if shared.args.no_stream else 8}",
f"do_sample={do_sample}",
f"temperature={temperature}",
f"stop={eos_token_ids[-1]}",
]
generate_params.update({
"max_new_tokens": max_new_tokens if shared.args.no_stream else 8,
"do_sample": do_sample,
"temperature": temperature,
"stop": eos_token_ids[-1],
})
if shared.args.deepspeed:
generate_params.append("synced_gpus=True")
generate_params.update({"synced_gpus": True})
if shared.soft_prompt:
inputs_embeds, filler_input_ids = generate_softprompt_input_tensors(input_ids)
generate_params.insert(0, "inputs_embeds=inputs_embeds")
generate_params.insert(0, "inputs=filler_input_ids")
generate_params.update({"inputs_embeds": inputs_embeds})
generate_params.update({"inputs": filler_input_ids})
else:
generate_params.insert(0, "inputs=input_ids")
generate_params.update({"inputs": input_ids})
try:
# Generate the entire reply at once.
if shared.args.no_stream:
with torch.no_grad():
output = eval(f"shared.model.generate({', '.join(generate_params)}){cuda}")[0]
output = shared.model.generate(**generate_params)[0]
if cuda:
output = output.cuda()
if shared.soft_prompt:
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
@ -194,7 +197,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
return Iteratorize(generate_with_callback, kwargs, callback=None)
yield formatted_outputs(original_question, shared.model_name)
with eval(f"generate_with_streaming({', '.join(generate_params)})") as generator:
with generate_with_streaming(**generate_params) as generator:
for output in generator:
if shared.soft_prompt:
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
@ -214,7 +217,7 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
for i in range(max_new_tokens//8+1):
clear_torch_cache()
with torch.no_grad():
output = eval(f"shared.model.generate({', '.join(generate_params)})")[0]
output = shared.model.generate(**generate_params)[0]
if shared.soft_prompt:
output = torch.cat((input_ids[0], output[filler_input_ids.shape[1]:]))
reply = decode(output)