Merge branch 'main' into new-streaming

This commit is contained in:
oobabooga 2023-03-11 19:59:45 -03:00
commit 92fe947721
9 changed files with 98 additions and 23 deletions

View File

@ -1,6 +1,6 @@
# Text generation web UI
A gradio web UI for running Large Language Models like GPT-J 6B, OPT, GALACTICA, GPT-Neo, and Pygmalion.
A gradio web UI for running Large Language Models like GPT-J 6B, OPT, GALACTICA, LLaMA, and Pygmalion.
Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) of text generation.
@ -27,6 +27,7 @@ Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.
* [FlexGen offload](https://github.com/oobabooga/text-generation-webui/wiki/FlexGen).
* [DeepSpeed ZeRO-3 offload](https://github.com/oobabooga/text-generation-webui/wiki/DeepSpeed).
* Get responses via API, [with](https://github.com/oobabooga/text-generation-webui/blob/main/api-example-streaming.py) or [without](https://github.com/oobabooga/text-generation-webui/blob/main/api-example.py) streaming.
* [Supports the LLaMA model](https://github.com/oobabooga/text-generation-webui/wiki/LLaMA-model).
* [Supports the RWKV model](https://github.com/oobabooga/text-generation-webui/wiki/RWKV-model).
* Supports softprompts.
* [Supports extensions](https://github.com/oobabooga/text-generation-webui/wiki/Extensions).
@ -53,7 +54,7 @@ The third line assumes that you have an NVIDIA GPU.
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/rocm5.2
```
* If you are running in CPU mode, replace the third command with this one:
* If you are running it in CPU mode, replace the third command with this one:
```
conda install pytorch torchvision torchaudio git -c pytorch
@ -137,6 +138,7 @@ Optionally, you can use the following command-line flags:
| `--cai-chat` | Launch the web UI in chat mode with a style similar to Character.AI's. If the file `img_bot.png` or `img_bot.jpg` exists in the same folder as server.py, this image will be used as the bot's profile picture. Similarly, `img_me.png` or `img_me.jpg` will be used as your profile picture. |
| `--cpu` | Use the CPU to generate text.|
| `--load-in-8bit` | Load the model with 8-bit precision.|
| `--load-in-4bit` | Load the model with 4-bit precision. Currently only works with LLaMA. |
| `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. |
| `--auto-devices` | Automatically split the model across the available GPU(s) and CPU.|
| `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. |
@ -187,8 +189,7 @@ For these two, please try commenting on an existing issue instead of creating a
## Credits
- Gradio dropdown menu refresh button: https://github.com/AUTOMATIC1111/stable-diffusion-webui
- Verbose preset: Anonymous 4chan user.
- NovelAI and KoboldAI presets: https://github.com/KoboldAI/KoboldAI-Client/wiki/Settings-Presets
- Pygmalion preset, code for early stopping in chat mode, code for some of the sliders, --chat mode colors: https://github.com/PygmalionAI/gradio-ui/
- Verbose preset: Anonymous 4chan user.
- Instruct-Joi preset: https://huggingface.co/Rallio67/joi_12B_instruct_alpha
- Gradio dropdown menu refresh button: https://github.com/AUTOMATIC1111/stable-diffusion-webui

View File

@ -5,7 +5,9 @@ Example:
python download-model.py facebook/opt-1.3b
'''
import argparse
import base64
import json
import multiprocessing
import re
@ -93,23 +95,28 @@ facebook/opt-1.3b
def get_download_links_from_huggingface(model, branch):
base = "https://huggingface.co"
page = f"/api/models/{model}/tree/{branch}?cursor="
cursor = b""
links = []
classifications = []
has_pytorch = False
has_safetensors = False
while page is not None:
content = requests.get(f"{base}{page}").content
while True:
content = requests.get(f"{base}{page}{cursor.decode()}").content
dict = json.loads(content)
if len(dict) == 0:
break
for i in range(len(dict)):
fname = dict[i]['path']
is_pytorch = re.match("pytorch_model.*\.bin", fname)
is_safetensors = re.match("model.*\.safetensors", fname)
is_text = re.match(".*\.(txt|json)", fname)
is_tokenizer = re.match("tokenizer.*\.model", fname)
is_text = re.match(".*\.(txt|json)", fname) or is_tokenizer
if is_text or is_safetensors or is_pytorch:
if any((is_pytorch, is_safetensors, is_text, is_tokenizer)):
if is_text:
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
classifications.append('text')
@ -123,8 +130,9 @@ def get_download_links_from_huggingface(model, branch):
has_pytorch = True
classifications.append('pytorch')
#page = dict['nextUrl']
page = None
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
cursor = base64.b64encode(cursor)
cursor = cursor.replace(b'=', b'%3D')
# If both pytorch and safetensors are available, download safetensors only
if has_pytorch and has_safetensors:

View File

@ -0,0 +1,18 @@
import gradio as gr
import modules.shared as shared
import pandas as pd
df = pd.read_csv("https://raw.githubusercontent.com/devbrones/llama-prompts/main/prompts/prompts.csv")
def get_prompt_by_name(name):
if name == 'None':
return ''
else:
return df[df['Prompt name'] == name].iloc[0]['Prompt'].replace('\\n', '\n')
def ui():
if not shared.args.chat or share.args.cai_chat:
choices = ['None'] + list(df['Prompt name'])
prompts_menu = gr.Dropdown(value=choices[0], choices=choices, label='Prompt')
prompts_menu.change(get_prompt_by_name, prompts_menu, shared.gradio['textbox'])

View File

@ -1,5 +1,6 @@
import json
import os
import sys
import time
import zipfile
from pathlib import Path
@ -41,7 +42,7 @@ def load_model(model_name):
shared.is_RWKV = model_name.lower().startswith('rwkv-')
# Default settings
if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen or shared.is_RWKV):
if not (shared.args.cpu or shared.args.load_in_8bit or shared.args.load_in_4bit or shared.args.auto_devices or shared.args.disk or shared.args.gpu_memory is not None or shared.args.cpu_memory is not None or shared.args.deepspeed or shared.args.flexgen or shared.is_RWKV):
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
else:
@ -86,6 +87,53 @@ def load_model(model_name):
return model, tokenizer
# 4-bit LLaMA
elif shared.args.load_in_4bit:
sys.path.insert(0, os.path.abspath(Path("repositories/GPTQ-for-LLaMa")))
from llama import load_quant
path_to_model = Path(f'models/{model_name}')
pt_model = ''
if path_to_model.name.lower().startswith('llama-7b'):
pt_model = 'llama-7b-4bit.pt'
elif path_to_model.name.lower().startswith('llama-13b'):
pt_model = 'llama-13b-4bit.pt'
elif path_to_model.name.lower().startswith('llama-30b'):
pt_model = 'llama-30b-4bit.pt'
elif path_to_model.name.lower().startswith('llama-65b'):
pt_model = 'llama-65b-4bit.pt'
else:
pt_model = f'{model_name}-4bit.pt'
# Try to find the .pt both in models/ and in the subfolder
pt_path = None
for path in [Path(p) for p in [f"models/{pt_model}", f"{path_to_model}/{pt_model}"]]:
if path.exists():
pt_path = path
if not pt_path:
print(f"Could not find {pt_model}, exiting...")
exit()
model = load_quant(path_to_model, Path(f"models/{pt_model}"), 4)
# Multi-GPU setup
if shared.args.gpu_memory:
import accelerate
max_memory = {}
for i in range(len(shared.args.gpu_memory)):
max_memory[i] = f"{shared.args.gpu_memory[i]}GiB"
max_memory['cpu'] = f"{shared.args.cpu_memory or '99'}GiB"
device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LLaMADecoderLayer"])
model = accelerate.dispatch_model(model, device_map=device_map)
# Single GPU
else:
model = model.to(torch.device('cuda:0'))
# Custom
else:
command = "AutoModelForCausalLM.from_pretrained"

View File

@ -42,7 +42,6 @@ settings = {
'default': 'NovelAI-Sphinx Moth',
'pygmalion-*': 'Pygmalion',
'RWKV-*': 'Naive',
'(rosey|chip|joi)_.*_instruct.*': 'Instruct Joi (Contrastive Search)'
},
'prompts': {
'default': 'Common sense questions and answers\n\nQuestion: \nFactual answer:',
@ -68,6 +67,7 @@ parser.add_argument('--chat', action='store_true', help='Launch the web UI in ch
parser.add_argument('--cai-chat', action='store_true', help='Launch the web UI in chat mode with a style similar to Character.AI\'s. If the file img_bot.png or img_bot.jpg exists in the same folder as server.py, this image will be used as the bot\'s profile picture. Similarly, img_me.png or img_me.jpg will be used as your profile picture.')
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text.')
parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision.')
parser.add_argument('--load-in-4bit', action='store_true', help='Load the model with 4-bit precision. Currently only works with LLaMA.')
parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')

View File

@ -0,0 +1,3 @@
do_sample=False
penalty_alpha=0.6
top_k=4

View File

@ -1,5 +0,0 @@
top_p=0.95
temperature=0.5
penalty_alpha=0.6
top_k=4
repetition_penalty=1.03

View File

@ -3,7 +3,8 @@ bitsandbytes==0.37.0
flexgen==0.1.7
gradio==3.18.0
numpy
requests
rwkv==0.1.0
safetensors==0.2.8
sentencepiece
git+https://github.com/oobabooga/transformers@llama_push
git+https://github.com/zphang/transformers@llama_push

View File

@ -34,7 +34,7 @@ def get_available_models():
if shared.args.flexgen:
return sorted([re.sub('-np$', '', item.name) for item in list(Path('models/').glob('*')) if item.name.endswith('-np')], key=str.lower)
else:
return sorted([item.name for item in list(Path('models/').glob('*')) if not item.name.endswith(('.txt', '-np'))], key=str.lower)
return sorted([item.name for item in list(Path('models/').glob('*')) if not item.name.endswith(('.txt', '-np', '.pt'))], key=str.lower)
def get_available_presets():
return sorted(set(map(lambda x : '.'.join(str(x.name).split('.')[:-1]), Path('presets').glob('*.txt'))), key=str.lower)
@ -194,11 +194,12 @@ shared.model, shared.tokenizer = load_model(shared.model_name)
gen_events = []
default_preset = shared.settings['presets'][next((k for k in shared.settings['presets'] if re.match(k.lower(), shared.model_name.lower())), 'default')]
default_text = shared.settings['prompts'][next((k for k in shared.settings['prompts'] if re.match(k.lower(), shared.model_name.lower())), 'default')]
title ='Text generation web UI'
description = '\n\n# Text generation lab\nGenerate text using Large Language Models.\n'
suffix = '_pygmalion' if 'pygmalion' in shared.model_name.lower() else ''
if shared.args.chat or shared.args.cai_chat:
with gr.Blocks(css=ui.css+ui.chat_css, analytics_enabled=False) as shared.gradio['interface']:
with gr.Blocks(css=ui.css+ui.chat_css, analytics_enabled=False, title=title) as shared.gradio['interface']:
if shared.args.cai_chat:
shared.gradio['display'] = gr.HTML(value=generate_chat_html(shared.history['visible'], shared.settings[f'name1{suffix}'], shared.settings[f'name2{suffix}'], shared.character))
else:
@ -310,7 +311,7 @@ if shared.args.chat or shared.args.cai_chat:
shared.gradio['interface'].load(reload_func, reload_inputs, [shared.gradio['display']], show_progress=True)
elif shared.args.notebook:
with gr.Blocks(css=ui.css, analytics_enabled=False) as shared.gradio['interface']:
with gr.Blocks(css=ui.css, analytics_enabled=False, title=title) as shared.gradio['interface']:
gr.Markdown(description)
with gr.Tab('Raw'):
shared.gradio['textbox'] = gr.Textbox(value=default_text, lines=23)
@ -334,7 +335,7 @@ elif shared.args.notebook:
shared.gradio['Stop'].click(None, None, None, cancels=gen_events)
else:
with gr.Blocks(css=ui.css, analytics_enabled=False) as shared.gradio['interface']:
with gr.Blocks(css=ui.css, analytics_enabled=False, title=title) as shared.gradio['interface']:
gr.Markdown(description)
with gr.Row():
with gr.Column():