Add llama.cpp support (#447 from thomasantony/feature/llamacpp)

Documentation: https://github.com/oobabooga/text-generation-webui/wiki/llama.cpp-models
This commit is contained in:
oobabooga 2023-03-31 15:17:32 -03:00 committed by GitHub
commit 6fd70d0032
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 100 additions and 5 deletions

1
.gitignore vendored
View File

@ -14,6 +14,7 @@ torch-dumps
*/*/pycache*
venv/
.venv/
.vscode
repositories
settings.json

View File

@ -34,7 +34,7 @@ class RWKVModel:
result.pipeline = pipeline
return result
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, alpha_frequency=0.1, alpha_presence=0.1, token_ban=[0], token_stop=[], callback=None):
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=None, alpha_frequency=0.1, alpha_presence=0.1, token_ban=[0], token_stop=[], callback=None):
args = PIPELINE_ARGS(
temperature = temperature,
top_p = top_p,

80
modules/llamacpp_model.py Normal file
View File

@ -0,0 +1,80 @@
from pathlib import Path
import llamacpp
import modules.shared as shared
from modules.callbacks import Iteratorize
class LlamaCppTokenizer:
"""A thin wrapper over the llamacpp tokenizer"""
def __init__(self, model: llamacpp.LlamaInference):
self._tokenizer = model.get_tokenizer()
self.eos_token_id = 2
self.bos_token_id = 0
@classmethod
def from_model(cls, model: llamacpp.LlamaInference):
return cls(model)
def encode(self, prompt: str):
return self._tokenizer.tokenize(prompt)
def decode(self, ids):
return self._tokenizer.detokenize(ids)
class LlamaCppModel:
def __init__(self):
self.initialized = False
@classmethod
def from_pretrained(self, path):
params = llamacpp.InferenceParams()
params.path_model = str(path)
_model = llamacpp.LlamaInference(params)
result = self()
result.model = _model
result.params = params
tokenizer = LlamaCppTokenizer.from_model(_model)
return result, tokenizer
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, repetition_penalty=1, callback=None):
params = self.params
params.n_predict = token_count
params.top_p = top_p
params.top_k = top_k
params.temp = temperature
params.repeat_penalty = repetition_penalty
#params.repeat_last_n = repeat_last_n
# model.params = params
self.model.add_bos()
self.model.update_input(context)
output = ""
is_end_of_text = False
ctr = 0
while ctr < token_count and not is_end_of_text:
if self.model.has_unconsumed_input():
self.model.ingest_all_pending_input()
else:
self.model.eval()
token = self.model.sample()
text = self.model.token_to_str(token)
is_end_of_text = token == self.model.token_eos()
if callback:
callback(text)
ctr += 1
return output
def generate_with_streaming(self, **kwargs):
with Iteratorize(self.generate, kwargs, callback=None) as generator:
reply = ''
for token in generator:
reply += token
yield reply

View File

@ -42,9 +42,10 @@ def load_model(model_name):
t0 = time.time()
shared.is_RWKV = 'rwkv-' in model_name.lower()
shared.is_llamacpp = model_name.lower().startswith(('llamacpp', 'alpaca-cpp'))
# Default settings
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.wbits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.wbits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV, shared.is_llamacpp]):
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
model = AutoModelForCausalLM.from_pretrained(Path(f"{shared.args.model_dir}/{shared.model_name}"), device_map='auto', load_in_8bit=True)
else:
@ -100,6 +101,18 @@ def load_model(model_name):
model = load_quantized(model_name)
# llamacpp model
elif shared.is_llamacpp:
from modules.llamacpp_model import LlamaCppModel
if model_name.lower().startswith('alpaca-cpp'):
model_file = f'models/{model_name}/ggml-alpaca-7b-q4.bin'
else:
model_file = f'models/{model_name}/ggml-model-q4_0.bin'
model, tokenizer = LlamaCppModel.from_pretrained(Path(model_file))
return model, tokenizer
# Custom
else:
params = {"low_cpu_mem_usage": True}

View File

@ -22,7 +22,7 @@ def get_max_prompt_length(tokens):
return max_length
def encode(prompt, tokens_to_generate=0, add_special_tokens=True):
if shared.is_RWKV:
if any((shared.is_RWKV, shared.is_llamacpp)):
input_ids = shared.tokenizer.encode(str(prompt))
input_ids = np.array(input_ids).reshape(1, len(input_ids))
return input_ids
@ -116,10 +116,10 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
# These models are not part of Hugging Face, so we handle them
# separately and terminate the function call earlier
if shared.is_RWKV:
if any((shared.is_RWKV, shared.is_llamacpp)):
try:
if shared.args.no_stream:
reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k)
reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty)
if not (shared.args.chat or shared.args.cai_chat):
reply = original_question + apply_extensions(reply, "output")
yield formatted_outputs(reply, shared.model_name)

View File

@ -2,6 +2,7 @@ accelerate==0.18.0
bitsandbytes==0.37.2
flexgen==0.1.7
gradio==3.24.0
llamacpp==0.1.11
markdown
numpy
peft==0.2.0