Add gpu_split param to ExLlama

Adapted from code created by Ph0rk0z. Thank you Ph0rk0z.
This commit is contained in:
oobabooga 2023-06-16 20:49:36 -03:00
parent cb9be5db1c
commit 5f392122fd
6 changed files with 20 additions and 4 deletions

View File

@ -267,6 +267,12 @@ Optionally, you can use the following command-line flags:
| `--no_inject_fused_mlp` | Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference. |
| `--desc_act` | For models that don't have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig. |
#### ExLlama
| Flag | Description |
|------------------|-------------|
|`--gpu-split` | Comma-separated list of VRAM (in GB) to use per GPU device for model layers, e.g. `20,7,7` |
#### GPTQ-for-LLaMa
| Flag | Description |

View File

@ -1,9 +1,10 @@
import sys
from pathlib import Path
sys.path.insert(0, str(Path("repositories/exllama")))
from modules import shared
from modules.logging_colors import logger
sys.path.insert(0, str(Path("repositories/exllama")))
from repositories.exllama.generator import ExLlamaGenerator
from repositories.exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
from repositories.exllama.tokenizer import ExLlamaTokenizer
@ -33,6 +34,10 @@ class ExllamaModel:
config = ExLlamaConfig(str(model_config_path))
config.model_path = str(model_path)
if shared.args.gpu_split:
config.set_auto_map(shared.args.gpu_split)
config.gpu_peer_fix = True
model = ExLlama(config)
tokenizer = ExLlamaTokenizer(str(tokenizer_model_path))
cache = ExLlamaCache(model)

View File

@ -53,6 +53,7 @@ loaders_and_params = {
'transformers_info'
],
'ExLlama' : [
'gpu_split',
'exllama_info',
]
}

View File

@ -148,6 +148,9 @@ parser.add_argument('--no_inject_fused_attention', action='store_true', help='Do
parser.add_argument('--no_inject_fused_mlp', action='store_true', help='Triton mode only: Do not use fused MLP (lowers VRAM requirements).')
parser.add_argument('--desc_act', action='store_true', help='For models that don\'t have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig.')
# ExLlama
parser.add_argument('--gpu-split', type=str, help="Comma-separated list of VRAM (in GB) to use per GPU device for model layers, e.g. 20,7,7")
# FlexGen
parser.add_argument('--flexgen', action='store_true', help='DEPRECATED')
parser.add_argument('--percent', type=int, nargs="+", default=[0, 100, 100, 0, 100, 0], help='FlexGen: allocation percentages. Must be 6 numbers separated by spaces (default: 0, 100, 100, 0, 100, 0).')

View File

@ -30,7 +30,7 @@ theme = gr.themes.Default(
def list_model_elements():
elements = ['loader', 'cpu_memory', 'auto_devices', 'disk', 'cpu', 'bf16', 'load_in_8bit', 'trust_remote_code', 'load_in_4bit', 'compute_dtype', 'quant_type', 'use_double_quant', 'wbits', 'groupsize', 'model_type', 'pre_layer', 'triton', 'desc_act', 'no_inject_fused_attention', 'no_inject_fused_mlp', 'threads', 'n_batch', 'no_mmap', 'mlock', 'n_gpu_layers', 'n_ctx', 'llama_cpp_seed']
elements = ['loader', 'cpu_memory', 'auto_devices', 'disk', 'cpu', 'bf16', 'load_in_8bit', 'trust_remote_code', 'load_in_4bit', 'compute_dtype', 'quant_type', 'use_double_quant', 'wbits', 'groupsize', 'model_type', 'pre_layer', 'triton', 'desc_act', 'no_inject_fused_attention', 'no_inject_fused_mlp', 'threads', 'n_batch', 'no_mmap', 'mlock', 'n_gpu_layers', 'n_ctx', 'llama_cpp_seed', 'gpu_split']
for i in range(torch.cuda.device_count()):
elements.append(f'gpu_memory_{i}')

View File

@ -216,7 +216,7 @@ def create_model_menus():
shared.gradio['model_type'] = gr.Dropdown(label="model_type", choices=["None", "llama", "opt", "gptj"], value=shared.args.model_type or "None")
shared.gradio['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, value=shared.args.pre_layer[0] if shared.args.pre_layer is not None else 0)
shared.gradio['autogptq_info'] = gr.Markdown('On some systems, AutoGPTQ can be 2x slower than GPTQ-for-LLaMa. You can manually select the GPTQ-for-LLaMa loader above.')
shared.gradio['exllama_info'] = gr.Markdown('ExLlama has to be installed manually. See the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/ExLlama.md).')
shared.gradio['gpu_split'] = gr.Textbox(label='gpu-slit', info='Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7')
with gr.Column():
shared.gradio['triton'] = gr.Checkbox(label="triton", value=shared.args.triton)
@ -235,6 +235,7 @@ def create_model_menus():
shared.gradio['llama_cpp_seed'] = gr.Number(label='Seed (0 for random)', value=shared.args.llama_cpp_seed)
shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Make sure to inspect the .py files inside the model folder before loading it with this option enabled.')
shared.gradio['gptq_for_llama_info'] = gr.Markdown('GPTQ-for-LLaMa is currently 2x faster than AutoGPTQ on some systems. It is installed by default with the one-click installers. Otherwise, it has to be installed manually following the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#installation-1).')
shared.gradio['exllama_info'] = gr.Markdown('ExLlama has to be installed manually. See the instructions here: [instructions](https://github.com/oobabooga/text-generation-webui/blob/main/docs/ExLlama.md).')
with gr.Column():
with gr.Row():