Refactor the /v1/models endpoint

This commit is contained in:
oobabooga 2023-11-07 19:59:27 -08:00
parent 1b69694fe9
commit 43c53a7820
3 changed files with 28 additions and 80 deletions

View File

@ -1,9 +1,4 @@
from extensions.openai.embeddings import get_embeddings_model_name
from extensions.openai.errors import OpenAIError
from modules import shared
from modules.models import load_model as _load_model
from modules.models import unload_model
from modules.models_settings import get_model_metadata, update_model_parameters
from modules.utils import get_available_models
@ -14,72 +9,29 @@ def get_current_model_info():
}
def get_current_model_list() -> list:
return [shared.model_name] # The real chat/completions model, maybe "None"
def list_models():
result = {
"object": "list",
"data": []
}
for model in get_dummy_models() + get_available_models()[1:]:
result["data"].append(model_info_dict(model))
return result
def get_pseudo_model_list() -> list:
def model_info_dict(model_name: str) -> dict:
return {
"id": model_name,
"object": "model",
"created": 0,
"owned_by": "user"
}
def get_dummy_models() -> list:
return [ # these are expected by so much, so include some here as a dummy
'gpt-3.5-turbo',
'text-embedding-ada-002',
]
def load_model(model_name: str) -> dict:
resp = {
"id": model_name,
"object": "engine",
"owner": "self",
"ready": True,
}
if model_name not in get_pseudo_model_list() + [get_embeddings_model_name()] + get_current_model_list(): # Real model only
# No args. Maybe it works anyways!
# TODO: hack some heuristics into args for better results
shared.model_name = model_name
unload_model()
model_settings = get_model_metadata(shared.model_name)
shared.settings.update({k: v for k, v in model_settings.items() if k in shared.settings})
update_model_parameters(model_settings, initial=True)
if shared.settings['mode'] != 'instruct':
shared.settings['instruction_template'] = None
shared.model, shared.tokenizer = _load_model(shared.model_name)
if not shared.model: # load failed.
shared.model_name = "None"
raise OpenAIError(f"Model load failed for: {shared.model_name}")
return resp
def list_models(is_legacy: bool = False) -> dict:
# TODO: Lora's?
all_model_list = get_current_model_list() + [get_embeddings_model_name()] + get_pseudo_model_list() + get_available_models()
models = {}
if is_legacy:
models = [{"id": id, "object": "engine", "owner": "user", "ready": True} for id in all_model_list]
if not shared.model:
models[0]['ready'] = False
else:
models = [{"id": id, "object": "model", "owned_by": "user", "permission": []} for id in all_model_list]
resp = {
"object": "list",
"data": models,
}
return resp
def model_info(model_name: str) -> dict:
return {
"id": model_name,
"object": "model",
"owned_by": "user",
"permission": []
}

View File

@ -112,22 +112,18 @@ async def openai_chat_completions(request: Request, request_data: ChatCompletion
@app.get("/v1/models")
@app.get("/v1/engines")
@app.get("/v1/models/{model}")
async def handle_models(request: Request):
path = request.url.path
is_legacy = 'engines' in path
is_list = request.url.path.split('?')[0].split('#')[0] in ['/v1/engines', '/v1/models']
is_list = request.url.path.split('?')[0].split('#')[0] == '/v1/models'
if is_legacy and not is_list:
model_name = path[path.find('/v1/engines/') + len('/v1/engines/'):]
resp = OAImodels.load_model(model_name)
elif is_list:
resp = OAImodels.list_models(is_legacy)
if is_list:
response = OAImodels.list_models()
else:
model_name = path[len('/v1/models/'):]
resp = OAImodels.model_info(model_name)
response = OAImodels.model_info_dict(model_name)
return JSONResponse(content=resp)
return JSONResponse(response)
@app.get('/v1/billing/usage')

View File

@ -71,12 +71,12 @@ def natural_keys(text):
def get_available_models():
model_list = ['None']
model_list = []
for item in list(Path(f'{shared.args.model_dir}/').glob('*')):
if not item.name.endswith(('.txt', '-np', '.pt', '.json', '.yaml', '.py')) and 'llama-tokenizer' not in item.name:
model_list.append(re.sub('.pth$', '', item.name))
return sorted(model_list, key=natural_keys)
return ['None'] + sorted(model_list, key=natural_keys)
def get_available_presets():