Add proper streaming to RWKV

This commit is contained in:
oobabooga 2023-03-07 18:17:56 -03:00
parent 8660227e1b
commit 19a34941ed
2 changed files with 52 additions and 8 deletions

View File

@ -1,5 +1,7 @@
import os
from pathlib import Path
from queue import Queue
from threading import Thread
import numpy as np
from tokenizers import Tokenizer
@ -33,7 +35,7 @@ class RWKVModel:
result.pipeline = pipeline
return result
def generate(self, context, token_count=20, temperature=1, top_p=1, top_k=50, alpha_frequency=0.1, alpha_presence=0.1, token_ban=[0], token_stop=[], callback=None):
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, alpha_frequency=0.1, alpha_presence=0.1, token_ban=[0], token_stop=[], callback=None):
args = PIPELINE_ARGS(
temperature = temperature,
top_p = top_p,
@ -46,6 +48,13 @@ class RWKVModel:
return context+self.pipeline.generate(context, token_count=token_count, args=args, callback=callback)
def generate_with_streaming(self, **kwargs):
iterable = Iteratorize(self.generate, kwargs, callback=None)
reply = kwargs['context']
for token in iterable:
reply += token
yield reply
class RWKVTokenizer:
def __init__(self):
pass
@ -64,3 +73,38 @@ class RWKVTokenizer:
def decode(self, ids):
return self.tokenizer.decode(ids)
class Iteratorize:
"""
Transforms a function that takes a callback
into a lazy iterator (generator).
"""
def __init__(self, func, kwargs={}, callback=None):
self.mfunc=func
self.c_callback=callback
self.q = Queue(maxsize=1)
self.sentinel = object()
self.kwargs = kwargs
def _callback(val):
self.q.put(val)
def gentask():
ret = self.mfunc(callback=_callback, **self.kwargs)
self.q.put(self.sentinel)
if self.c_callback:
self.c_callback(ret)
Thread(target=gentask).start()
def __iter__(self):
return self
def __next__(self):
obj = self.q.get(True,None)
if obj is self.sentinel:
raise StopIteration
else:
return obj

View File

@ -92,17 +92,17 @@ def generate_reply(question, max_new_tokens, do_sample, temperature, top_p, typi
# separately and terminate the function call earlier
if shared.is_RWKV:
if shared.args.no_stream:
reply = shared.model.generate(question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k)
t1 = time.time()
print(f"Output generated in {(t1-t0):.2f} seconds.")
reply = shared.model.generate(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k)
yield formatted_outputs(reply, shared.model_name)
else:
yield formatted_outputs(question, shared.model_name)
for i in tqdm(range(max_new_tokens//8+1)):
clear_torch_cache()
reply = shared.model.generate(question, token_count=8, temperature=temperature, top_p=top_p, top_k=top_k)
# RWKV has proper streaming, which is very nice.
# No need to generate 8 tokens at a time.
for reply in shared.model.generate_with_streaming(context=question, token_count=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k):
yield formatted_outputs(reply, shared.model_name)
question = reply
t1 = time.time()
print(f"Output generated in {(t1-t0):.2f} seconds.")
return
original_question = question