text-generation-webui/server.py

1102 lines
66 KiB
Python
Raw Normal View History

2023-04-05 13:05:50 -04:00
import os
2023-04-21 16:20:59 -04:00
import warnings
import requests
from modules.logging_colors import logger
2023-04-21 16:18:34 -04:00
2023-04-05 13:05:50 -04:00
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
os.environ['BITSANDBYTES_NOWELCOME'] = '1'
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
# This is a hack to prevent Gradio from phoning home when it gets imported
def my_get(url, **kwargs):
logger.info('Gradio HTTP request redirected to localhost :)')
kwargs.setdefault('allow_redirects', True)
return requests.api.request('get', 'http://127.0.0.1/', **kwargs)
original_get = requests.get
requests.get = my_get
import gradio as gr
requests.get = original_get
2023-04-05 13:05:50 -04:00
import matplotlib
2023-05-03 20:43:17 -04:00
matplotlib.use('Agg') # This fixes LaTeX rendering on some systems
import importlib
import json
2023-04-12 16:09:56 -04:00
import math
import os
import re
2023-04-12 20:24:26 -04:00
import sys
import time
import traceback
from datetime import datetime
from functools import partial
from pathlib import Path
from threading import Lock
2023-04-12 16:09:56 -04:00
import psutil
import torch
import yaml
from PIL import Image
import modules.extensions as extensions_module
2023-05-05 22:14:56 -04:00
from modules import chat, shared, training, ui, utils
from modules.extensions import apply_extensions
2023-04-05 10:49:59 -04:00
from modules.html_generator import chat_html_wrapper
2023-03-17 10:42:25 -04:00
from modules.LoRA import add_lora_to_model
2023-06-06 06:42:23 -04:00
from modules.models import load_model, unload_model
from modules.text_generation import (generate_reply_wrapper,
get_encoded_length, stop_everything_event)
2023-03-16 20:31:39 -04:00
def load_model_wrapper(selected_model, autoload=False):
if not autoload:
yield f"The settings for {selected_model} have been updated.\nClick on \"Load the model\" to load it."
return
2023-02-07 20:08:21 -05:00
if selected_model == 'None':
yield "No model selected"
else:
try:
yield f"Loading {selected_model}..."
shared.model_name = selected_model
unload_model()
if selected_model != '':
shared.model, shared.tokenizer = load_model(shared.model_name)
yield f"Successfully loaded {selected_model}"
except:
yield traceback.format_exc()
2023-02-12 07:36:27 -05:00
def load_lora_wrapper(selected_loras):
yield ("Applying the following LoRAs to {}:\n\n{}".format(shared.model_name, '\n'.join(selected_loras)))
add_lora_to_model(selected_loras)
yield ("Successfuly applied the LoRAs")
2023-03-16 20:31:39 -04:00
def load_preset_values(preset_menu, state, return_dict=False):
2023-02-07 22:19:20 -05:00
generate_params = {
2023-02-07 20:08:21 -05:00
'do_sample': True,
'temperature': 1,
'top_p': 1,
'typical_p': 1,
'epsilon_cutoff': 0,
'eta_cutoff': 0,
2023-05-31 22:44:38 -04:00
'tfs': 1,
'top_a': 0,
2023-02-07 20:08:21 -05:00
'repetition_penalty': 1,
'encoder_repetition_penalty': 1,
'top_k': 0,
2023-02-07 21:11:04 -05:00
'num_beams': 1,
'penalty_alpha': 0,
2023-02-07 21:11:04 -05:00
'min_length': 0,
'length_penalty': 1,
'no_repeat_ngram_size': 0,
'early_stopping': False,
'mirostat_mode': 0,
'mirostat_tau': 5.0,
'mirostat_eta': 0.1,
2023-02-07 20:08:21 -05:00
}
2023-05-28 21:34:12 -04:00
with open(Path(f'presets/{preset_menu}.yaml'), 'r') as infile:
preset = yaml.safe_load(infile)
for k in preset:
generate_params[k] = preset[k]
2023-02-07 20:08:21 -05:00
generate_params['temperature'] = min(1.99, generate_params['temperature'])
2023-02-07 20:08:21 -05:00
if return_dict:
2023-02-07 22:19:20 -05:00
return generate_params
2023-02-07 20:08:21 -05:00
else:
state.update(generate_params)
return state, *[generate_params[k] for k in ['do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'tfs', 'top_a']]
2023-02-07 20:08:21 -05:00
def open_save_prompt():
fname = f"{datetime.now().strftime('%Y-%m-%d-%H%M%S')}"
return gr.update(value=fname, visible=True), gr.update(visible=False), gr.update(visible=True)
def save_prompt(text, fname):
if fname != "":
with open(Path(f'prompts/{fname}.txt'), 'w', encoding='utf-8') as f:
f.write(text)
2023-05-17 01:34:29 -04:00
message = f"Saved to prompts/{fname}.txt"
else:
2023-05-17 01:34:29 -04:00
message = "Error: No prompt name given."
return message, gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
def load_prompt(fname):
if fname in ['None', '']:
return ''
2023-05-10 00:34:04 -04:00
elif fname.startswith('Instruct-'):
fname = re.sub('^Instruct-', '', fname)
with open(Path(f'characters/instruction-following/{fname}.yaml'), 'r', encoding='utf-8') as f:
data = yaml.safe_load(f)
output = ''
if 'context' in data:
output += data['context']
replacements = {
'<|user|>': data['user'],
'<|bot|>': data['bot'],
'<|user-message|>': 'Input',
}
output += utils.replace_all(data['turn_template'].split('<|bot-message|>')[0], replacements)
return output.rstrip(' ')
else:
with open(Path(f'prompts/{fname}.txt'), 'r', encoding='utf-8') as f:
text = f.read()
if text[-1] == '\n':
text = text[:-1]
return text
2023-04-05 10:49:59 -04:00
2023-04-21 16:18:34 -04:00
def count_tokens(text):
tokens = get_encoded_length(text)
2023-04-21 16:18:34 -04:00
return f'{tokens} tokens in the input.'
def download_model_wrapper(repo_id):
try:
downloader_module = importlib.import_module("download-model")
downloader = downloader_module.ModelDownloader()
repo_id_parts = repo_id.split(":")
model = repo_id_parts[0] if len(repo_id_parts) > 0 else repo_id
branch = repo_id_parts[1] if len(repo_id_parts) > 1 else "main"
check = False
yield ("Cleaning up the model/branch names")
model, branch = downloader.sanitize_model_and_branch_names(model, branch)
yield ("Getting the download links from Hugging Face")
links, sha256, is_lora = downloader.get_download_links_from_huggingface(model, branch, text_only=False)
yield ("Getting the output folder")
output_folder = downloader.get_output_folder(model, branch, is_lora)
if check:
yield ("Checking previously downloaded files")
downloader.check_model_files(model, branch, links, sha256, output_folder)
else:
yield (f"Downloading files to {output_folder}")
downloader.download_model_files(model, branch, links, sha256, output_folder, threads=1)
yield ("Done!")
except:
yield traceback.format_exc()
# Update the command-line arguments based on the interface values
def update_model_parameters(state, initial=False):
elements = ui.list_model_elements() # the names of the parameters
2023-04-12 17:21:14 -04:00
gpu_memories = []
2023-04-14 14:35:06 -04:00
2023-04-12 16:09:56 -04:00
for i, element in enumerate(elements):
if element not in state:
continue
value = state[element]
2023-04-12 17:21:14 -04:00
if element.startswith('gpu_memory'):
gpu_memories.append(value)
2023-04-12 17:21:14 -04:00
continue
2023-04-14 14:35:06 -04:00
if initial and vars(shared.args)[element] != vars(shared.args_defaults)[element]:
continue
# Setting null defaults
if element in ['wbits', 'groupsize', 'model_type'] and value == 'None':
2023-04-14 14:35:06 -04:00
value = vars(shared.args_defaults)[element]
elif element in ['cpu_memory'] and value == 0:
2023-04-14 14:35:06 -04:00
value = vars(shared.args_defaults)[element]
# Making some simple conversions
2023-04-12 16:09:56 -04:00
if element in ['wbits', 'groupsize', 'pre_layer']:
value = int(value)
elif element == 'cpu_memory' and value is not None:
value = f"{value}MiB"
2023-04-12 16:09:56 -04:00
if element in ['pre_layer']:
value = [value] if value > 0 else None
setattr(shared.args, element, value)
2023-04-12 17:21:14 -04:00
found_positive = False
for i in gpu_memories:
if i > 0:
found_positive = True
break
if not (initial and vars(shared.args)['gpu_memory'] != vars(shared.args_defaults)['gpu_memory']):
if found_positive:
shared.args.gpu_memory = [f"{i}MiB" for i in gpu_memories]
else:
shared.args.gpu_memory = None
2023-04-12 16:09:56 -04:00
def get_model_specific_settings(model):
settings = shared.model_config
model_settings = {}
for pat in settings:
if re.match(pat.lower(), model.lower()):
for k in settings[pat]:
model_settings[k] = settings[pat][k]
return model_settings
def load_model_specific_settings(model, state, return_dict=False):
model_settings = get_model_specific_settings(model)
for k in model_settings:
if k in state:
state[k] = model_settings[k]
return state
def save_model_settings(model, state):
if model == 'None':
yield ("Not saving the settings because no model is loaded.")
return
with Path(f'{shared.args.model_dir}/config-user.yaml') as p:
if p.exists():
user_config = yaml.safe_load(open(p, 'r').read())
else:
user_config = {}
model_regex = model + '$' # For exact matches
for _dict in [user_config, shared.model_config]:
if model_regex not in _dict:
_dict[model_regex] = {}
2023-05-12 13:33:00 -04:00
if model_regex not in user_config:
user_config[model_regex] = {}
for k in ui.list_model_elements():
user_config[model_regex][k] = state[k]
shared.model_config[model_regex][k] = state[k]
with open(p, 'w') as f:
2023-05-28 21:34:12 -04:00
f.write(yaml.dump(user_config, sort_keys=False))
yield (f"Settings for {model} saved to {p}")
2023-04-12 17:26:15 -04:00
def create_model_menus():
2023-04-12 16:09:56 -04:00
# Finding the default values for the GPU and CPU memories
2023-04-12 17:21:14 -04:00
total_mem = []
for i in range(torch.cuda.device_count()):
total_mem.append(math.floor(torch.cuda.get_device_properties(i).total_memory / (1024 * 1024)))
2023-04-12 17:21:14 -04:00
default_gpu_mem = []
2023-04-12 16:09:56 -04:00
if shared.args.gpu_memory is not None and len(shared.args.gpu_memory) > 0:
2023-04-12 17:21:14 -04:00
for i in shared.args.gpu_memory:
if 'mib' in i.lower():
default_gpu_mem.append(int(re.sub('[a-zA-Z ]', '', i)))
else:
default_gpu_mem.append(int(re.sub('[a-zA-Z ]', '', i)) * 1000)
2023-04-12 17:21:14 -04:00
while len(default_gpu_mem) < len(total_mem):
default_gpu_mem.append(0)
total_cpu_mem = math.floor(psutil.virtual_memory().total / (1024 * 1024))
2023-04-12 16:09:56 -04:00
if shared.args.cpu_memory is not None:
default_cpu_mem = re.sub('[a-zA-Z ]', '', shared.args.cpu_memory)
else:
default_cpu_mem = 0
2023-04-06 00:54:05 -04:00
with gr.Row():
with gr.Column():
with gr.Row():
2023-04-12 16:09:56 -04:00
with gr.Column():
with gr.Row():
2023-05-05 22:14:56 -04:00
shared.gradio['model_menu'] = gr.Dropdown(choices=utils.get_available_models(), value=shared.model_name, label='Model')
ui.create_refresh_button(shared.gradio['model_menu'], lambda: None, lambda: {'choices': utils.get_available_models()}, 'refresh-button')
2023-04-12 16:09:56 -04:00
with gr.Column():
with gr.Row():
2023-05-05 22:14:56 -04:00
shared.gradio['lora_menu'] = gr.Dropdown(multiselect=True, choices=utils.get_available_loras(), value=shared.lora_names, label='LoRA(s)')
ui.create_refresh_button(shared.gradio['lora_menu'], lambda: None, lambda: {'choices': utils.get_available_loras(), 'value': shared.lora_names}, 'refresh-button')
2023-04-12 16:09:56 -04:00
2023-04-06 00:54:05 -04:00
with gr.Column():
with gr.Row():
shared.gradio['lora_menu_apply'] = gr.Button(value='Apply the selected LoRAs')
with gr.Row():
load = gr.Button("Load the model", visible=not shared.settings['autoload_model'])
unload = gr.Button("Unload the model")
reload = gr.Button("Reload the model")
2023-04-18 22:36:23 -04:00
save_settings = gr.Button("Save settings for this model")
2023-04-12 16:09:56 -04:00
with gr.Row():
with gr.Column():
2023-04-12 16:09:56 -04:00
with gr.Box():
2023-05-25 00:14:13 -04:00
gr.Markdown('Transformers')
2023-04-12 16:09:56 -04:00
with gr.Row():
with gr.Column():
2023-04-12 17:21:14 -04:00
for i in range(len(total_mem)):
shared.gradio[f'gpu_memory_{i}'] = gr.Slider(label=f"gpu-memory in MiB for device :{i}", maximum=total_mem[i], value=default_gpu_mem[i])
2023-05-25 00:14:13 -04:00
shared.gradio['cpu_memory'] = gr.Slider(label="cpu-memory in MiB", maximum=total_cpu_mem, value=default_cpu_mem)
2023-04-12 16:09:56 -04:00
with gr.Column():
shared.gradio['auto_devices'] = gr.Checkbox(label="auto-devices", value=shared.args.auto_devices)
shared.gradio['disk'] = gr.Checkbox(label="disk", value=shared.args.disk)
shared.gradio['cpu'] = gr.Checkbox(label="cpu", value=shared.args.cpu)
shared.gradio['bf16'] = gr.Checkbox(label="bf16", value=shared.args.bf16)
shared.gradio['load_in_8bit'] = gr.Checkbox(label="load-in-8bit", value=shared.args.load_in_8bit)
shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='Make sure to inspect the .py files inside the model folder before loading it with this option enabled.')
2023-04-12 16:09:56 -04:00
with gr.Box():
2023-05-25 00:14:13 -04:00
gr.Markdown('Transformers 4-bit')
2023-04-12 16:09:56 -04:00
with gr.Row():
with gr.Column():
2023-05-25 00:14:13 -04:00
shared.gradio['load_in_4bit'] = gr.Checkbox(label="load-in-4bit", value=shared.args.load_in_4bit)
shared.gradio['use_double_quant'] = gr.Checkbox(label="use_double_quant", value=shared.args.use_double_quant)
2023-04-12 16:09:56 -04:00
with gr.Column():
2023-05-25 00:14:13 -04:00
shared.gradio['compute_dtype'] = gr.Dropdown(label="compute_dtype", choices=["bfloat16", "float16", "float32"], value=shared.args.compute_dtype)
shared.gradio['quant_type'] = gr.Dropdown(label="quant_type", choices=["nf4", "fp4"], value=shared.args.quant_type)
2023-04-12 16:09:56 -04:00
with gr.Row():
2023-05-09 14:56:32 -04:00
shared.gradio['autoload_model'] = gr.Checkbox(value=shared.settings['autoload_model'], label='Autoload the model', info='Whether to load the model as soon as it is selected in the Model dropdown.')
shared.gradio['custom_model_menu'] = gr.Textbox(label="Download custom model or LoRA", info="Enter the Hugging Face username/model path, for instance: facebook/galactica-125m. To specify a branch, add it at the end after a \":\" character like this: facebook/galactica-125m:main")
2023-04-14 18:38:30 -04:00
shared.gradio['download_model_button'] = gr.Button("Download")
2023-04-12 16:09:56 -04:00
with gr.Column():
with gr.Box():
2023-05-25 00:14:13 -04:00
with gr.Row():
with gr.Column():
2023-06-06 06:58:07 -04:00
gr.Markdown('GPTQ')
2023-06-02 00:45:46 -04:00
shared.gradio['triton'] = gr.Checkbox(label="triton", value=shared.args.triton)
2023-06-02 10:28:43 -04:00
shared.gradio['desc_act'] = gr.Checkbox(label="desc_act", value=shared.args.desc_act, info='\'desc_act\', \'wbits\', and \'groupsize\' are used for old models without a quantize_config.json.')
2023-06-06 06:58:07 -04:00
shared.gradio['gptq_for_llama'] = gr.Checkbox(label="gptq-for-llama", value=shared.args.gptq_for_llama, info='Use GPTQ-for-LLaMa loader instead of AutoGPTQ. pre_layer should be used for CPU offloading instead of gpu-memory.')
2023-05-25 00:14:13 -04:00
2023-06-02 01:24:15 -04:00
with gr.Column():
with gr.Row():
shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=shared.args.wbits if shared.args.wbits > 0 else "None")
shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=shared.args.groupsize if shared.args.groupsize > 0 else "None")
shared.gradio['model_type'] = gr.Dropdown(label="model_type", choices=["None", "llama", "opt", "gptj"], value=shared.args.model_type or "None")
shared.gradio['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, value=shared.args.pre_layer[0] if shared.args.pre_layer is not None else 0)
2023-05-25 00:14:13 -04:00
with gr.Box():
gr.Markdown('llama.cpp')
with gr.Row():
with gr.Column():
shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=32, value=shared.args.threads)
shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, value=shared.args.n_batch)
shared.gradio['n_gpu_layers'] = gr.Slider(label="n-gpu-layers", minimum=0, maximum=128, value=shared.args.n_gpu_layers)
2023-05-25 12:55:51 -04:00
shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=8192, step=1, label="n_ctx", value=shared.args.n_ctx)
with gr.Column():
2023-05-16 16:35:49 -04:00
shared.gradio['no_mmap'] = gr.Checkbox(label="no-mmap", value=shared.args.no_mmap)
shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock)
shared.gradio['llama_cpp_seed'] = gr.Number(label='Seed (0 for random)', value=shared.args.llama_cpp_seed)
with gr.Row():
shared.gradio['model_status'] = gr.Markdown('No model is loaded' if shared.model_name == 'None' else 'Ready')
2023-04-12 16:09:56 -04:00
# In this event handler, the interface state is read and updated
# with the model defaults (if any), and then the model is loaded
# unless "autoload_model" is unchecked
2023-04-12 16:09:56 -04:00
shared.gradio['model_menu'].change(
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
load_model_specific_settings, [shared.gradio[k] for k in ['model_menu', 'interface_state']], shared.gradio['interface_state']).then(
ui.apply_interface_values, shared.gradio['interface_state'], [shared.gradio[k] for k in ui.list_interface_input_elements(chat=shared.is_chat())], show_progress=False).then(
update_model_parameters, shared.gradio['interface_state'], None).then(
load_model_wrapper, [shared.gradio[k] for k in ['model_menu', 'autoload_model']], shared.gradio['model_status'], show_progress=False)
load.click(
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
update_model_parameters, shared.gradio['interface_state'], None).then(
partial(load_model_wrapper, autoload=True), shared.gradio['model_menu'], shared.gradio['model_status'], show_progress=False)
2023-04-12 16:09:56 -04:00
unload.click(
unload_model, None, None).then(
lambda: "Model unloaded", None, shared.gradio['model_status'])
reload.click(
unload_model, None, None).then(
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
update_model_parameters, shared.gradio['interface_state'], None).then(
2023-05-10 13:43:28 -04:00
partial(load_model_wrapper, autoload=True), shared.gradio['model_menu'], shared.gradio['model_status'], show_progress=False)
save_settings.click(
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
save_model_settings, [shared.gradio[k] for k in ['model_menu', 'interface_state']], shared.gradio['model_status'], show_progress=False)
2023-04-06 00:54:05 -04:00
shared.gradio['lora_menu_apply'].click(load_lora_wrapper, shared.gradio['lora_menu'], shared.gradio['model_status'], show_progress=False)
2023-04-14 18:38:30 -04:00
shared.gradio['download_model_button'].click(download_model_wrapper, shared.gradio['custom_model_menu'], shared.gradio['model_status'], show_progress=False)
2023-05-09 21:49:39 -04:00
shared.gradio['autoload_model'].change(lambda x: gr.update(visible=not x), shared.gradio['autoload_model'], load)
2023-04-06 00:54:05 -04:00
2023-06-06 06:46:25 -04:00
def create_chat_settings_menus():
if not shared.is_chat():
return
with gr.Box():
gr.Markdown("Chat parameters")
with gr.Row():
with gr.Column():
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
shared.gradio['chat_prompt_size'] = gr.Slider(minimum=shared.settings['chat_prompt_size_min'], maximum=shared.settings['chat_prompt_size_max'], step=1, label='chat_prompt_size', info='Set limit on prompt size by removing old messages (while retaining context and user input)', value=shared.settings['chat_prompt_size'])
with gr.Column():
shared.gradio['chat_generation_attempts'] = gr.Slider(minimum=shared.settings['chat_generation_attempts_min'], maximum=shared.settings['chat_generation_attempts_max'], value=shared.settings['chat_generation_attempts'], step=1, label='Generation attempts (for longer replies)', info='New generations will be called until either this number is reached or no new content is generated between two iterations.')
shared.gradio['stop_at_newline'] = gr.Checkbox(value=shared.settings['stop_at_newline'], label='Stop generating at new line character')
2023-06-06 06:46:25 -04:00
def create_settings_menus(default_preset):
generate_params = load_preset_values(default_preset if not shared.args.flexgen else 'Naive', {}, return_dict=True)
with gr.Row():
with gr.Column():
2023-04-06 00:54:05 -04:00
with gr.Row():
with gr.Column():
with gr.Row():
shared.gradio['preset_menu'] = gr.Dropdown(choices=utils.get_available_presets(), value=default_preset if not shared.args.flexgen else 'Naive', label='Generation parameters preset')
ui.create_refresh_button(shared.gradio['preset_menu'], lambda: None, lambda: {'choices': utils.get_available_presets()}, 'refresh-button')
with gr.Column():
shared.gradio['seed'] = gr.Number(value=shared.settings['seed'], label='Seed (-1 for random)')
2023-03-15 12:24:54 -04:00
with gr.Box():
gr.Markdown('Main parameters')
2023-03-15 12:24:54 -04:00
with gr.Row():
with gr.Column():
2023-06-06 13:51:02 -04:00
shared.gradio['do_sample'] = gr.Checkbox(value=generate_params['do_sample'], label='do_sample')
shared.gradio['temperature'] = gr.Slider(0.01, 1.99, value=generate_params['temperature'], step=0.01, label='temperature', info='Primary factor to control randomness of outputs. 0 = deterministic (only the most likely token is used). Higher value = more randomness.')
shared.gradio['top_p'] = gr.Slider(0.0, 1.0, value=generate_params['top_p'], step=0.01, label='top_p', info='If not set to 1, select tokens with probabilities adding up to less than this number. Higher value = higher range of possible random results.')
shared.gradio['top_k'] = gr.Slider(0, 200, value=generate_params['top_k'], step=1, label='top_k', info='Similar to top_p, but select instead only the top_k most likely tokens. Higher value = higher range of possible random results.')
shared.gradio['typical_p'] = gr.Slider(0.0, 1.0, value=generate_params['typical_p'], step=0.01, label='typical_p', info='If not set to 1, select only tokens that are at least this much more likely to appear than random tokens, given the prior text.')
shared.gradio['epsilon_cutoff'] = gr.Slider(0, 9, value=generate_params['epsilon_cutoff'], step=0.01, label='epsilon_cutoff', info='In units of 1e-4; a reasonable value is 3. This sets a probability floor below which tokens are excluded from being sampled. Should be used with top_p, top_k, and eta_cutoff set to 0.')
shared.gradio['eta_cutoff'] = gr.Slider(0, 20, value=generate_params['eta_cutoff'], step=0.01, label='eta_cutoff', info='In units of 1e-4; a reasonable value is 3. Should be used with top_p, top_k, and epsilon_cutoff set to 0.')
2023-03-15 12:24:54 -04:00
with gr.Column():
shared.gradio['repetition_penalty'] = gr.Slider(1.0, 1.5, value=generate_params['repetition_penalty'], step=0.01, label='repetition_penalty', info='Exponential penalty factor for repeating prior tokens. 1 means no penalty, higher value = less repetition, lower value = more repetition.')
shared.gradio['encoder_repetition_penalty'] = gr.Slider(0.8, 1.5, value=generate_params['encoder_repetition_penalty'], step=0.01, label='encoder_repetition_penalty', info='Also known as the "Hallucinations filter". Used to penalize tokens that are *not* in the prior text. Higher value = more likely to stay in context, lower value = more likely to diverge.')
shared.gradio['no_repeat_ngram_size'] = gr.Slider(0, 20, step=1, value=generate_params['no_repeat_ngram_size'], label='no_repeat_ngram_size', info='If not set to 0, specifies the length of token sets that are completely blocked from repeating at all. Higher values = blocks larger phrases, lower values = blocks words or letters from repeating. Only 0 or high values are a good idea in most cases.')
shared.gradio['min_length'] = gr.Slider(0, 2000, step=1, value=generate_params['min_length'], label='min_length', info='Minimum generation length in tokens.')
2023-06-06 13:51:02 -04:00
shared.gradio['tfs'] = gr.Slider(0.0, 1.0, value=generate_params['tfs'], step=0.01, label='tfs')
shared.gradio['top_a'] = gr.Slider(0.0, 1.0, value=generate_params['top_a'], step=0.01, label='top_a')
2023-03-15 12:24:54 -04:00
with gr.Column():
2023-06-06 06:46:25 -04:00
create_chat_settings_menus()
2023-03-15 12:24:54 -04:00
with gr.Box():
with gr.Row():
with gr.Column():
gr.Markdown('Contrastive search')
2023-05-21 22:08:44 -04:00
shared.gradio['penalty_alpha'] = gr.Slider(0, 5, value=generate_params['penalty_alpha'], label='penalty_alpha', info='Contrastive Search is enabled by setting this to greater than zero and unchecking "do_sample". It should be used with a low value of top_k, for instance, top_k = 4.')
2023-06-06 06:54:56 -04:00
gr.Markdown('Beam search')
2023-03-15 12:24:54 -04:00
shared.gradio['num_beams'] = gr.Slider(1, 20, step=1, value=generate_params['num_beams'], label='num_beams')
shared.gradio['length_penalty'] = gr.Slider(-5, 5, value=generate_params['length_penalty'], label='length_penalty')
2023-04-18 22:36:23 -04:00
shared.gradio['early_stopping'] = gr.Checkbox(value=generate_params['early_stopping'], label='early_stopping')
with gr.Column():
gr.Markdown('Mirostat (mode=1 is only for llama.cpp)')
shared.gradio['mirostat_mode'] = gr.Slider(0, 2, step=1, value=generate_params['mirostat_mode'], label='mirostat_mode')
shared.gradio['mirostat_tau'] = gr.Slider(0, 10, step=0.01, value=generate_params['mirostat_tau'], label='mirostat_tau')
shared.gradio['mirostat_eta'] = gr.Slider(0, 1, step=0.01, value=generate_params['mirostat_eta'], label='mirostat_eta')
2023-04-16 23:33:22 -04:00
with gr.Box():
with gr.Row():
2023-04-16 23:33:22 -04:00
with gr.Column():
shared.gradio['truncation_length'] = gr.Slider(value=shared.settings['truncation_length'], minimum=shared.settings['truncation_length_min'], maximum=shared.settings['truncation_length_max'], step=1, label='Truncate the prompt up to this length', info='The leftmost tokens are removed if the prompt exceeds this length. Most models require this to be at most 2048.')
shared.gradio['custom_stopping_strings'] = gr.Textbox(lines=1, value=shared.settings["custom_stopping_strings"] or None, label='Custom stopping strings', info='In addition to the defaults. Written between "" and separated by commas. For instance: "\\nYour Assistant:", "\\nThe assistant:"')
with gr.Column():
shared.gradio['ban_eos_token'] = gr.Checkbox(value=shared.settings['ban_eos_token'], label='Ban the eos_token', info='Forces the model to never end the generation prematurely.')
2023-05-16 18:52:22 -04:00
shared.gradio['add_bos_token'] = gr.Checkbox(value=shared.settings['add_bos_token'], label='Add the bos_token to the beginning of prompts', info='Disabling this can make the replies more creative.')
2023-04-16 23:33:22 -04:00
shared.gradio['skip_special_tokens'] = gr.Checkbox(value=shared.settings['skip_special_tokens'], label='Skip special tokens', info='Some specific models need this unset.')
shared.gradio['stream'] = gr.Checkbox(value=not shared.args.no_stream, label='Activate text streaming')
2023-03-15 12:24:54 -04:00
2023-05-22 18:38:34 -04:00
gr.Markdown('[Click here for more information.](https://github.com/oobabooga/text-generation-webui/blob/main/docs/Generation-parameters.md)')
shared.gradio['preset_menu'].change(load_preset_values, [shared.gradio[k] for k in ['preset_menu', 'interface_state']], [shared.gradio[k] for k in ['interface_state', 'do_sample', 'temperature', 'top_p', 'typical_p', 'epsilon_cutoff', 'eta_cutoff', 'repetition_penalty', 'encoder_repetition_penalty', 'top_k', 'min_length', 'no_repeat_ngram_size', 'num_beams', 'penalty_alpha', 'length_penalty', 'early_stopping', 'mirostat_mode', 'mirostat_tau', 'mirostat_eta', 'tfs', 'top_a']])
2023-02-07 20:08:21 -05:00
def set_interface_arguments(interface_mode, extensions, bool_active):
modes = ["default", "notebook", "chat", "cai_chat"]
cmd_list = vars(shared.args)
bool_list = [k for k in cmd_list if type(cmd_list[k]) is bool and k not in modes]
shared.args.extensions = extensions
for k in modes[1:]:
setattr(shared.args, k, False)
if interface_mode != "default":
setattr(shared.args, interface_mode, True)
for k in bool_list:
setattr(shared.args, k, False)
for k in bool_active:
setattr(shared.args, k, True)
shared.need_restart = True
def create_interface():
# Defining some variables
gen_events = []
2023-05-28 21:34:12 -04:00
default_preset = shared.settings['preset']
default_text = load_prompt(shared.settings['prompt'])
title = 'Text generation web UI'
# Authentication variables
auth = None
gradio_auth_creds = []
if shared.args.gradio_auth:
gradio_auth_creds += [x.strip() for x in shared.args.gradio_auth.strip('"').replace('\n', '').split(',') if x.strip()]
if shared.args.gradio_auth_path is not None:
with open(shared.args.gradio_auth_path, 'r', encoding="utf8") as file:
for line in file.readlines():
gradio_auth_creds += [x.strip() for x in line.split(',') if x.strip()]
if gradio_auth_creds:
auth = [tuple(cred.split(':')) for cred in gradio_auth_creds]
# Importing the extension files and executing their setup() functions
2023-03-15 22:29:56 -04:00
if shared.args.extensions is not None and len(shared.args.extensions) > 0:
extensions_module.load_extensions()
# css/js strings
css = ui.css if not shared.is_chat() else ui.css + ui.chat_css
js = ui.main_js if not shared.is_chat() else ui.main_js + ui.chat_js
css += apply_extensions('css')
js += apply_extensions('js')
with gr.Blocks(css=css, analytics_enabled=False, title=title, theme=ui.theme) as shared.gradio['interface']:
if Path("notification.mp3").exists():
shared.gradio['audio_notification'] = gr.Audio(interactive=False, value="notification.mp3", elem_id="audio_notification", visible=False)
audio_notification_js = "document.querySelector('#audio_notification audio')?.play();"
else:
audio_notification_js = ""
# Create chat mode interface
if shared.is_chat():
2023-04-12 09:27:06 -04:00
shared.input_elements = ui.list_interface_input_elements(chat=True)
shared.gradio['interface_state'] = gr.State({k: None for k in shared.input_elements})
2023-04-02 17:05:21 -04:00
shared.gradio['Chat input'] = gr.State()
shared.gradio['dummy'] = gr.State()
2023-04-12 16:09:56 -04:00
with gr.Tab('Text generation', elem_id='main'):
shared.gradio['display'] = gr.HTML(value=chat_html_wrapper(shared.history['visible'], shared.settings['name1'], shared.settings['name2'], 'chat', 'cai-chat'))
2023-03-15 22:29:56 -04:00
shared.gradio['textbox'] = gr.Textbox(label='Input')
with gr.Row():
2023-04-12 16:09:56 -04:00
shared.gradio['Stop'] = gr.Button('Stop', elem_id='stop')
2023-04-18 23:56:24 -04:00
shared.gradio['Generate'] = gr.Button('Generate', elem_id='Generate', variant='primary')
2023-04-14 22:17:15 -04:00
shared.gradio['Continue'] = gr.Button('Continue')
2023-03-15 22:29:56 -04:00
with gr.Row():
2023-05-29 23:17:31 -04:00
shared.gradio['Impersonate'] = gr.Button('Impersonate')
2023-03-15 22:29:56 -04:00
shared.gradio['Regenerate'] = gr.Button('Regenerate')
2023-05-29 23:17:31 -04:00
shared.gradio['Remove last'] = gr.Button('Remove last')
2023-03-15 22:29:56 -04:00
with gr.Row():
2023-05-29 23:17:31 -04:00
shared.gradio['Copy last reply'] = gr.Button('Copy last reply')
shared.gradio['Replace last reply'] = gr.Button('Replace last reply')
shared.gradio['Send dummy message'] = gr.Button('Send dummy message')
shared.gradio['Send dummy reply'] = gr.Button('Send dummy reply')
with gr.Row():
2023-03-15 22:29:56 -04:00
shared.gradio['Clear history'] = gr.Button('Clear history')
2023-04-12 16:09:56 -04:00
shared.gradio['Clear history-confirm'] = gr.Button('Confirm', variant='stop', visible=False)
2023-03-15 22:29:56 -04:00
shared.gradio['Clear history-cancel'] = gr.Button('Cancel', visible=False)
2023-01-15 16:16:46 -05:00
with gr.Row():
shared.gradio['start_with'] = gr.Textbox(label='Start reply with', placeholder='Sure thing!', value=shared.settings['start_with'])
with gr.Row():
shared.gradio['mode'] = gr.Radio(choices=['chat', 'chat-instruct', 'instruct'], value=shared.settings['mode'] if shared.settings['mode'] in ['chat', 'instruct', 'chat-instruct'] else 'chat', label='Mode', info='Defines how the chat prompt is generated. In instruct and chat-instruct modes, the instruction template selected under "Chat settings" must match the current model.')
shared.gradio['chat_style'] = gr.Dropdown(choices=utils.get_available_chat_styles(), label='Chat style', value=shared.settings['chat_style'], visible=shared.settings['mode'] != 'instruct')
2023-04-05 10:49:59 -04:00
2023-05-14 09:43:55 -04:00
with gr.Tab('Chat settings', elem_id='chat-settings'):
2023-05-16 16:22:59 -04:00
with gr.Row():
with gr.Column(scale=8):
with gr.Row():
shared.gradio['character_menu'] = gr.Dropdown(choices=utils.get_available_characters(), label='Character', elem_id='character-menu', info='Used in chat and chat-instruct modes.')
ui.create_refresh_button(shared.gradio['character_menu'], lambda: None, lambda: {'choices': utils.get_available_characters()}, 'refresh-button')
shared.gradio['save_character'] = ui.create_save_button(elem_id='refresh-button')
shared.gradio['delete_character'] = ui.create_delete_button(elem_id='refresh-button')
shared.gradio['save_character-filename'] = gr.Textbox(lines=1, label='File name:', interactive=True, visible=False)
shared.gradio['save_character-confirm'] = gr.Button('Confirm save character', elem_classes="small-button", variant='primary', visible=False)
shared.gradio['save_character-cancel'] = gr.Button('Cancel', elem_classes="small-button", visible=False)
shared.gradio['delete_character-confirm'] = gr.Button('Confirm delete character', elem_classes="small-button", variant='stop', visible=False)
shared.gradio['delete_character-cancel'] = gr.Button('Cancel', elem_classes="small-button", visible=False)
2023-05-16 16:22:59 -04:00
shared.gradio['name1'] = gr.Textbox(value=shared.settings['name1'], lines=1, label='Your name')
shared.gradio['name2'] = gr.Textbox(value=shared.settings['name2'], lines=1, label='Character\'s name')
shared.gradio['context'] = gr.Textbox(value=shared.settings['context'], lines=4, label='Context')
shared.gradio['greeting'] = gr.Textbox(value=shared.settings['greeting'], lines=4, label='Greeting')
with gr.Column(scale=1):
shared.gradio['character_picture'] = gr.Image(label='Character picture', type='pil')
shared.gradio['your_picture'] = gr.Image(label='Your picture', type='pil', value=Image.open(Path('cache/pfp_me.png')) if Path('cache/pfp_me.png').exists() else None)
with gr.Row():
shared.gradio['instruction_template'] = gr.Dropdown(choices=utils.get_available_instruction_templates(), label='Instruction template', value='None', info='Change this according to the model/LoRA that you are using. Used in instruct and chat-instruct modes.')
ui.create_refresh_button(shared.gradio['instruction_template'], lambda: None, lambda: {'choices': utils.get_available_instruction_templates()}, 'refresh-button')
2023-05-16 16:22:59 -04:00
shared.gradio['name1_instruct'] = gr.Textbox(value='', lines=2, label='User string')
shared.gradio['name2_instruct'] = gr.Textbox(value='', lines=1, label='Bot string')
shared.gradio['context_instruct'] = gr.Textbox(value='', lines=4, label='Context')
shared.gradio['turn_template'] = gr.Textbox(value=shared.settings['turn_template'], lines=1, label='Turn template', info='Used to precisely define the placement of spaces and new line characters in instruction prompts.')
with gr.Row():
shared.gradio['chat-instruct_command'] = gr.Textbox(value=shared.settings['chat-instruct_command'], lines=4, label='Command for chat-instruct mode', info='<|character|> gets replaced by the bot name, and <|prompt|> gets replaced by the regular chat prompt.')
2023-03-15 22:29:56 -04:00
with gr.Row():
with gr.Tab('Chat history'):
with gr.Row():
with gr.Column():
gr.Markdown('### Upload')
2023-03-15 22:29:56 -04:00
shared.gradio['upload_chat_history'] = gr.File(type='binary', file_types=['.json', '.txt'])
2023-03-15 22:29:56 -04:00
with gr.Column():
gr.Markdown('### Download')
2023-03-15 22:29:56 -04:00
shared.gradio['download'] = gr.File()
shared.gradio['download_button'] = gr.Button(value='Click me')
2023-03-15 22:29:56 -04:00
with gr.Tab('Upload character'):
gr.Markdown('### JSON format')
2023-03-15 22:29:56 -04:00
with gr.Row():
with gr.Column():
gr.Markdown('1. Select the JSON file')
shared.gradio['upload_json'] = gr.File(type='binary', file_types=['.json'])
2023-03-15 22:29:56 -04:00
with gr.Column():
gr.Markdown('2. Select your character\'s profile picture (optional)')
shared.gradio['upload_img_bot'] = gr.File(type='binary', file_types=['image'])
2023-04-03 17:01:45 -04:00
shared.gradio['Upload character'] = gr.Button(value='Submit')
gr.Markdown('### TavernAI PNG format')
2023-04-03 17:01:45 -04:00
shared.gradio['upload_img_tavern'] = gr.File(type='binary', file_types=['image'])
2023-03-15 22:29:56 -04:00
with gr.Tab("Parameters", elem_id="parameters"):
create_settings_menus(default_preset)
# Create notebook mode interface
2023-03-15 22:29:56 -04:00
elif shared.args.notebook:
2023-04-12 09:27:06 -04:00
shared.input_elements = ui.list_interface_input_elements(chat=False)
shared.gradio['interface_state'] = gr.State({k: None for k in shared.input_elements})
shared.gradio['last_input'] = gr.State('')
2023-03-15 22:29:56 -04:00
with gr.Tab("Text generation", elem_id="main"):
2023-03-15 17:56:26 -04:00
with gr.Row():
2023-03-26 21:20:30 -04:00
with gr.Column(scale=4):
with gr.Tab('Raw'):
2023-04-18 22:36:23 -04:00
shared.gradio['textbox'] = gr.Textbox(value=default_text, elem_classes="textbox", lines=27)
2023-03-26 21:20:30 -04:00
with gr.Tab('Markdown'):
shared.gradio['markdown_render'] = gr.Button('Render')
2023-03-26 21:20:30 -04:00
shared.gradio['markdown'] = gr.Markdown()
2023-03-26 21:20:30 -04:00
with gr.Tab('HTML'):
shared.gradio['html'] = gr.HTML()
2023-03-26 21:20:30 -04:00
with gr.Row():
2023-04-21 01:35:28 -04:00
shared.gradio['Generate'] = gr.Button('Generate', variant='primary', elem_classes="small-button")
shared.gradio['Stop'] = gr.Button('Stop', elem_classes="small-button")
shared.gradio['Undo'] = gr.Button('Undo', elem_classes="small-button")
shared.gradio['Regenerate'] = gr.Button('Regenerate', elem_classes="small-button")
2023-03-26 21:20:30 -04:00
with gr.Column(scale=1):
2023-03-27 12:52:12 -04:00
gr.HTML('<div style="padding-bottom: 13px"></div>')
2023-03-26 21:20:30 -04:00
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
2023-04-13 10:05:47 -04:00
with gr.Row():
2023-05-05 22:14:56 -04:00
shared.gradio['prompt_menu'] = gr.Dropdown(choices=utils.get_available_prompts(), value='None', label='Prompt')
ui.create_refresh_button(shared.gradio['prompt_menu'], lambda: None, lambda: {'choices': utils.get_available_prompts()}, 'refresh-button')
shared.gradio['open_save_prompt'] = gr.Button('Save prompt')
shared.gradio['save_prompt'] = gr.Button('Confirm save prompt', visible=False)
shared.gradio['prompt_to_save'] = gr.Textbox(elem_classes="textbox_default", lines=1, label='Prompt name:', interactive=True, visible=False)
2023-04-21 16:18:34 -04:00
shared.gradio['count_tokens'] = gr.Button('Count tokens')
2023-04-13 10:05:47 -04:00
shared.gradio['status'] = gr.Markdown('')
2023-03-15 22:29:56 -04:00
with gr.Tab("Parameters", elem_id="parameters"):
create_settings_menus(default_preset)
# Create default mode interface
2023-03-15 22:29:56 -04:00
else:
2023-04-12 09:27:06 -04:00
shared.input_elements = ui.list_interface_input_elements(chat=False)
shared.gradio['interface_state'] = gr.State({k: None for k in shared.input_elements})
shared.gradio['last_input'] = gr.State('')
2023-03-15 22:29:56 -04:00
with gr.Tab("Text generation", elem_id="main"):
with gr.Row():
with gr.Column():
2023-04-18 22:36:23 -04:00
shared.gradio['textbox'] = gr.Textbox(value=default_text, elem_classes="textbox_default", lines=27, label='Input')
2023-03-15 22:29:56 -04:00
shared.gradio['max_new_tokens'] = gr.Slider(minimum=shared.settings['max_new_tokens_min'], maximum=shared.settings['max_new_tokens_max'], step=1, label='max_new_tokens', value=shared.settings['max_new_tokens'])
with gr.Row():
2023-04-21 16:18:34 -04:00
shared.gradio['Generate'] = gr.Button('Generate', variant='primary', elem_classes="small-button")
shared.gradio['Stop'] = gr.Button('Stop', elem_classes="small-button")
shared.gradio['Continue'] = gr.Button('Continue', elem_classes="small-button")
shared.gradio['open_save_prompt'] = gr.Button('Save prompt', elem_classes="small-button")
shared.gradio['save_prompt'] = gr.Button('Confirm save prompt', visible=False, elem_classes="small-button")
2023-04-21 16:18:34 -04:00
shared.gradio['count_tokens'] = gr.Button('Count tokens', elem_classes="small-button")
2023-04-13 10:05:47 -04:00
with gr.Row():
with gr.Column():
with gr.Row():
2023-05-05 22:14:56 -04:00
shared.gradio['prompt_menu'] = gr.Dropdown(choices=utils.get_available_prompts(), value='None', label='Prompt')
ui.create_refresh_button(shared.gradio['prompt_menu'], lambda: None, lambda: {'choices': utils.get_available_prompts()}, 'refresh-button')
2023-04-13 10:05:47 -04:00
with gr.Column():
shared.gradio['prompt_to_save'] = gr.Textbox(elem_classes="textbox_default", lines=1, label='Prompt name:', interactive=True, visible=False)
2023-04-13 10:05:47 -04:00
shared.gradio['status'] = gr.Markdown('')
2023-01-18 20:44:47 -05:00
2023-03-15 22:29:56 -04:00
with gr.Column():
with gr.Tab('Raw'):
2023-04-18 22:36:23 -04:00
shared.gradio['output_textbox'] = gr.Textbox(elem_classes="textbox_default_output", lines=27, label='Output')
2023-04-13 10:05:47 -04:00
2023-03-15 22:29:56 -04:00
with gr.Tab('Markdown'):
shared.gradio['markdown_render'] = gr.Button('Render')
2023-03-15 22:29:56 -04:00
shared.gradio['markdown'] = gr.Markdown()
2023-04-13 10:05:47 -04:00
2023-03-15 22:29:56 -04:00
with gr.Tab('HTML'):
shared.gradio['html'] = gr.HTML()
2023-03-15 22:29:56 -04:00
with gr.Tab("Parameters", elem_id="parameters"):
create_settings_menus(default_preset)
# Model tab
2023-04-06 00:54:05 -04:00
with gr.Tab("Model", elem_id="model-tab"):
create_model_menus()
# Training tab
with gr.Tab("Training", elem_id="training-tab"):
training.create_train_interface()
# Interface mode tab
2023-03-15 22:29:56 -04:00
with gr.Tab("Interface mode", elem_id="interface-mode"):
modes = ["default", "notebook", "chat"]
2023-03-15 22:29:56 -04:00
current_mode = "default"
for mode in modes[1:]:
if getattr(shared.args, mode):
2023-03-15 22:29:56 -04:00
current_mode = mode
break
cmd_list = vars(shared.args)
2023-05-17 00:57:51 -04:00
bool_list = sorted([k for k in cmd_list if type(cmd_list[k]) is bool and k not in modes + ui.list_model_elements()])
bool_active = [k for k in bool_list if vars(shared.args)[k]]
2023-03-15 22:29:56 -04:00
with gr.Row():
shared.gradio['interface_modes_menu'] = gr.Dropdown(choices=modes, value=current_mode, label="Mode")
shared.gradio['toggle_dark_mode'] = gr.Button('Toggle dark/light mode', elem_classes="small-button")
shared.gradio['extensions_menu'] = gr.CheckboxGroup(choices=utils.get_available_extensions(), value=shared.args.extensions, label="Available extensions", info='Note that some of these extensions may require manually installing Python requirements through the command: pip install -r extensions/extension_name/requirements.txt')
shared.gradio['bool_menu'] = gr.CheckboxGroup(choices=bool_list, value=bool_active, label="Boolean command-line flags")
2023-04-07 11:22:14 -04:00
shared.gradio['reset_interface'] = gr.Button("Apply and restart the interface")
2023-04-08 16:25:21 -04:00
# Reset interface event
shared.gradio['reset_interface'].click(
set_interface_arguments, [shared.gradio[k] for k in ['interface_modes_menu', 'extensions_menu', 'bool_menu']], None).then(
lambda: None, None, None, _js='() => {document.body.innerHTML=\'<h1 style="font-family:monospace;margin-top:20%;color:lightgray;text-align:center;">Reloading...</h1>\'; setTimeout(function(){location.reload()},2500); return []}')
2023-05-22 02:19:01 -04:00
shared.gradio['toggle_dark_mode'].click(lambda: None, None, None, _js='() => {document.getElementsByTagName("body")[0].classList.toggle("dark")}')
# chat mode event handlers
if shared.is_chat():
shared.input_params = [shared.gradio[k] for k in ['Chat input', 'start_with', 'interface_state']]
clear_arr = [shared.gradio[k] for k in ['Clear history-confirm', 'Clear history', 'Clear history-cancel']]
shared.reload_inputs = [shared.gradio[k] for k in ['name1', 'name2', 'mode', 'chat_style']]
gen_events.append(shared.gradio['Generate'].click(
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
lambda x: (x, ''), shared.gradio['textbox'], [shared.gradio['Chat input'], shared.gradio['textbox']], show_progress=False).then(
2023-05-11 14:37:04 -04:00
chat.generate_chat_reply_wrapper, shared.input_params, shared.gradio['display'], show_progress=False).then(
chat.save_history, shared.gradio['mode'], None, show_progress=False).then(
2023-05-21 23:02:59 -04:00
lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
)
gen_events.append(shared.gradio['textbox'].submit(
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
lambda x: (x, ''), shared.gradio['textbox'], [shared.gradio['Chat input'], shared.gradio['textbox']], show_progress=False).then(
2023-05-11 14:37:04 -04:00
chat.generate_chat_reply_wrapper, shared.input_params, shared.gradio['display'], show_progress=False).then(
chat.save_history, shared.gradio['mode'], None, show_progress=False).then(
2023-05-21 23:02:59 -04:00
lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
)
gen_events.append(shared.gradio['Regenerate'].click(
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
2023-05-11 14:37:04 -04:00
partial(chat.generate_chat_reply_wrapper, regenerate=True), shared.input_params, shared.gradio['display'], show_progress=False).then(
chat.save_history, shared.gradio['mode'], None, show_progress=False).then(
2023-05-21 23:02:59 -04:00
lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
)
gen_events.append(shared.gradio['Continue'].click(
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
2023-05-11 14:37:04 -04:00
partial(chat.generate_chat_reply_wrapper, _continue=True), shared.input_params, shared.gradio['display'], show_progress=False).then(
chat.save_history, shared.gradio['mode'], None, show_progress=False).then(
2023-05-21 23:02:59 -04:00
lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
)
gen_events.append(shared.gradio['Impersonate'].click(
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
lambda x: x, shared.gradio['textbox'], shared.gradio['Chat input'], show_progress=False).then(
chat.impersonate_wrapper, shared.input_params, shared.gradio['textbox'], show_progress=False).then(
2023-05-21 23:02:59 -04:00
lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
)
shared.gradio['Replace last reply'].click(
2023-05-11 14:37:04 -04:00
chat.replace_last_reply, shared.gradio['textbox'], None).then(
lambda: '', None, shared.gradio['textbox'], show_progress=False).then(
chat.save_history, shared.gradio['mode'], None, show_progress=False).then(
chat.redraw_html, shared.reload_inputs, shared.gradio['display'])
shared.gradio['Send dummy message'].click(
2023-05-11 14:37:04 -04:00
chat.send_dummy_message, shared.gradio['textbox'], None).then(
lambda: '', None, shared.gradio['textbox'], show_progress=False).then(
chat.save_history, shared.gradio['mode'], None, show_progress=False).then(
chat.redraw_html, shared.reload_inputs, shared.gradio['display'])
shared.gradio['Send dummy reply'].click(
2023-05-11 14:37:04 -04:00
chat.send_dummy_reply, shared.gradio['textbox'], None).then(
lambda: '', None, shared.gradio['textbox'], show_progress=False).then(
chat.save_history, shared.gradio['mode'], None, show_progress=False).then(
chat.redraw_html, shared.reload_inputs, shared.gradio['display'])
shared.gradio['Clear history-confirm'].click(
lambda: [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, clear_arr).then(
2023-05-11 14:37:04 -04:00
chat.clear_chat_log, [shared.gradio[k] for k in ['greeting', 'mode']], None).then(
chat.save_history, shared.gradio['mode'], None, show_progress=False).then(
chat.redraw_html, shared.reload_inputs, shared.gradio['display'])
shared.gradio['Stop'].click(
stop_everything_event, None, None, queue=False, cancels=gen_events if shared.args.no_stream else None).then(
chat.redraw_html, shared.reload_inputs, shared.gradio['display'])
shared.gradio['mode'].change(
2023-05-14 09:43:55 -04:00
lambda x: gr.update(visible=x != 'instruct'), shared.gradio['mode'], shared.gradio['chat_style'], show_progress=False).then(
chat.redraw_html, shared.reload_inputs, shared.gradio['display'])
shared.gradio['chat_style'].change(chat.redraw_html, shared.reload_inputs, shared.gradio['display'])
shared.gradio['instruction_template'].change(
2023-05-14 09:43:55 -04:00
partial(chat.load_character, instruct=True), [shared.gradio[k] for k in ['instruction_template', 'name1_instruct', 'name2_instruct']], [shared.gradio[k] for k in ['name1_instruct', 'name2_instruct', 'dummy', 'dummy', 'context_instruct', 'turn_template']])
shared.gradio['upload_chat_history'].upload(
chat.load_history, [shared.gradio[k] for k in ['upload_chat_history', 'name1', 'name2']], None).then(
chat.redraw_html, shared.reload_inputs, shared.gradio['display'])
shared.gradio['Copy last reply'].click(chat.send_last_reply_to_input, None, shared.gradio['textbox'], show_progress=False)
shared.gradio['Clear history'].click(lambda: [gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)], None, clear_arr)
shared.gradio['Clear history-cancel'].click(lambda: [gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)], None, clear_arr)
2023-05-11 14:37:04 -04:00
shared.gradio['Remove last'].click(
chat.remove_last_message, None, shared.gradio['textbox'], show_progress=False).then(
chat.save_history, shared.gradio['mode'], None, show_progress=False).then(
chat.redraw_html, shared.reload_inputs, shared.gradio['display'])
2023-05-11 14:37:04 -04:00
# Save/delete a character
shared.gradio['save_character'].click(
lambda x: x, shared.gradio['name2'], shared.gradio['save_character-filename'], show_progress=True).then(
lambda: [gr.update(visible=True)] * 3, None, [shared.gradio[k] for k in ['save_character-filename', 'save_character-confirm', 'save_character-cancel']], show_progress=False)
shared.gradio['save_character-cancel'].click(
lambda: [gr.update(visible=False)] * 3, None, [shared.gradio[k] for k in ['save_character-filename', 'save_character-confirm', 'save_character-cancel']], show_progress=False)
shared.gradio['save_character-confirm'].click(
partial(chat.save_character, instruct=False), [shared.gradio[k] for k in ['name2', 'greeting', 'context', 'character_picture', 'save_character-filename']], None).then(
lambda: [gr.update(visible=False)] * 3, None, [shared.gradio[k] for k in ['save_character-filename', 'save_character-confirm', 'save_character-cancel']], show_progress=False).then(
lambda x: x, shared.gradio['save_character-filename'], shared.gradio['character_menu'])
shared.gradio['delete_character'].click(
lambda: [gr.update(visible=True)] * 2, None, [shared.gradio[k] for k in ['delete_character-confirm', 'delete_character-cancel']], show_progress=False)
shared.gradio['delete_character-cancel'].click(
lambda: [gr.update(visible=False)] * 2, None, [shared.gradio[k] for k in ['delete_character-confirm', 'delete_character-cancel']], show_progress=False)
shared.gradio['delete_character-confirm'].click(
partial(chat.delete_character, instruct=False), shared.gradio['character_menu'], None).then(
lambda: gr.update(choices=utils.get_available_characters()), outputs=shared.gradio['character_menu']).then(
lambda: 'None', None, shared.gradio['character_menu']).then(
lambda: [gr.update(visible=False)] * 2, None, [shared.gradio[k] for k in ['delete_character-confirm', 'delete_character-cancel']], show_progress=False)
shared.gradio['download_button'].click(lambda x: chat.save_history(x, timestamp=True), shared.gradio['mode'], shared.gradio['download'])
shared.gradio['Upload character'].click(chat.upload_character, [shared.gradio['upload_json'], shared.gradio['upload_img_bot']], [shared.gradio['character_menu']])
2023-05-11 14:37:04 -04:00
shared.gradio['character_menu'].change(
2023-05-14 09:43:55 -04:00
partial(chat.load_character, instruct=False), [shared.gradio[k] for k in ['character_menu', 'name1', 'name2']], [shared.gradio[k] for k in ['name1', 'name2', 'character_picture', 'greeting', 'context', 'dummy']]).then(
chat.redraw_html, shared.reload_inputs, shared.gradio['display'])
2023-05-11 14:37:04 -04:00
shared.gradio['upload_img_tavern'].upload(chat.upload_tavern_character, [shared.gradio['upload_img_tavern'], shared.gradio['name1'], shared.gradio['name2']], [shared.gradio['character_menu']])
2023-05-11 14:37:04 -04:00
shared.gradio['your_picture'].change(
chat.upload_your_profile_picture, shared.gradio['your_picture'], None).then(
partial(chat.redraw_html, reset_cache=True), shared.reload_inputs, shared.gradio['display'])
2023-05-11 14:37:04 -04:00
# notebook/default modes event handlers
else:
shared.input_params = [shared.gradio[k] for k in ['textbox', 'interface_state']]
if shared.args.notebook:
output_params = [shared.gradio[k] for k in ['textbox', 'html']]
else:
output_params = [shared.gradio[k] for k in ['output_textbox', 'html']]
gen_events.append(shared.gradio['Generate'].click(
lambda x: x, shared.gradio['textbox'], shared.gradio['last_input']).then(
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
generate_reply_wrapper, shared.input_params, output_params, show_progress=False).then(
2023-05-21 23:02:59 -04:00
lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
# lambda: None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[0]; element.scrollTop = element.scrollHeight}")
)
gen_events.append(shared.gradio['textbox'].submit(
lambda x: x, shared.gradio['textbox'], shared.gradio['last_input']).then(
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
generate_reply_wrapper, shared.input_params, output_params, show_progress=False).then(
2023-05-21 23:02:59 -04:00
lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
# lambda: None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[0]; element.scrollTop = element.scrollHeight}")
)
if shared.args.notebook:
shared.gradio['Undo'].click(lambda x: x, shared.gradio['last_input'], shared.gradio['textbox'], show_progress=False)
shared.gradio['markdown_render'].click(lambda x: x, shared.gradio['textbox'], shared.gradio['markdown'], queue=False)
gen_events.append(shared.gradio['Regenerate'].click(
lambda x: x, shared.gradio['last_input'], shared.gradio['textbox'], show_progress=False).then(
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
generate_reply_wrapper, shared.input_params, output_params, show_progress=False).then(
2023-05-21 23:02:59 -04:00
lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
# lambda: None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[0]; element.scrollTop = element.scrollHeight}")
)
else:
shared.gradio['markdown_render'].click(lambda x: x, shared.gradio['output_textbox'], shared.gradio['markdown'], queue=False)
gen_events.append(shared.gradio['Continue'].click(
ui.gather_interface_values, [shared.gradio[k] for k in shared.input_elements], shared.gradio['interface_state']).then(
generate_reply_wrapper, [shared.gradio['output_textbox']] + shared.input_params[1:], output_params, show_progress=False).then(
2023-05-21 23:02:59 -04:00
lambda: None, None, None, _js=f"() => {{{audio_notification_js}}}")
# lambda: None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[1]; element.scrollTop = element.scrollHeight}")
)
shared.gradio['Stop'].click(stop_everything_event, None, None, queue=False, cancels=gen_events if shared.args.no_stream else None)
2023-04-21 16:18:34 -04:00
shared.gradio['prompt_menu'].change(load_prompt, shared.gradio['prompt_menu'], shared.gradio['textbox'], show_progress=False)
shared.gradio['open_save_prompt'].click(open_save_prompt, None, [shared.gradio[k] for k in ['prompt_to_save', 'open_save_prompt', 'save_prompt']], show_progress=False)
shared.gradio['save_prompt'].click(save_prompt, [shared.gradio[k] for k in ['textbox', 'prompt_to_save']], [shared.gradio[k] for k in ['status', 'prompt_to_save', 'open_save_prompt', 'save_prompt']], show_progress=False)
2023-04-21 16:18:34 -04:00
shared.gradio['count_tokens'].click(count_tokens, shared.gradio['textbox'], shared.gradio['status'], show_progress=False)
2023-03-27 22:29:52 -04:00
2023-05-21 23:02:59 -04:00
shared.gradio['interface'].load(lambda: None, None, None, _js=f"() => {{{js}}}")
if shared.settings['dark_theme']:
2023-05-25 00:14:13 -04:00
shared.gradio['interface'].load(lambda: None, None, None, _js="() => document.getElementsByTagName('body')[0].classList.add('dark')")
shared.gradio['interface'].load(partial(ui.apply_interface_values, {}, use_persistent=True), None, [shared.gradio[k] for k in ui.list_interface_input_elements(chat=shared.is_chat())], show_progress=False)
2023-05-17 00:25:01 -04:00
# Extensions tabs
extensions_module.create_extensions_tabs()
# Extensions block
2023-05-17 00:25:01 -04:00
extensions_module.create_extensions_block()
2023-03-15 22:29:56 -04:00
# Launch the interface
shared.gradio['interface'].queue()
if shared.args.listen:
shared.gradio['interface'].launch(prevent_thread_lock=True, share=shared.args.share, server_name=shared.args.listen_host or '0.0.0.0', server_port=shared.args.listen_port, inbrowser=shared.args.auto_launch, auth=auth)
2023-03-15 19:44:34 -04:00
else:
2023-03-27 22:29:52 -04:00
shared.gradio['interface'].launch(prevent_thread_lock=True, share=shared.args.share, server_port=shared.args.listen_port, inbrowser=shared.args.auto_launch, auth=auth)
2023-03-15 22:29:56 -04:00
if __name__ == "__main__":
# Loading custom settings
settings_file = None
if shared.args.settings is not None and Path(shared.args.settings).exists():
settings_file = Path(shared.args.settings)
2023-05-28 21:34:12 -04:00
elif Path('settings.yaml').exists():
settings_file = Path('settings.yaml')
elif Path('settings.json').exists():
settings_file = Path('settings.json')
if settings_file is not None:
logger.info(f"Loading settings from {settings_file}...")
2023-05-28 21:34:12 -04:00
file_contents = open(settings_file, 'r', encoding='utf-8').read()
new_settings = json.loads(file_contents) if settings_file.suffix == "json" else yaml.safe_load(file_contents)
for item in new_settings:
shared.settings[item] = new_settings[item]
2023-05-28 21:34:12 -04:00
# Set default model settings based on settings file
shared.model_config['.*'] = {
'wbits': 'None',
'model_type': 'None',
'groupsize': 'None',
'pre_layer': 0,
'mode': shared.settings['mode'],
'skip_special_tokens': shared.settings['skip_special_tokens'],
'custom_stopping_strings': shared.settings['custom_stopping_strings'],
2023-06-05 11:07:52 -04:00
'truncation_length': shared.settings['truncation_length'],
}
shared.model_config.move_to_end('.*', last=False) # Move to the beginning
# Default extensions
2023-05-05 22:14:56 -04:00
extensions_module.available_extensions = utils.get_available_extensions()
if shared.is_chat():
for extension in shared.settings['chat_default_extensions']:
shared.args.extensions = shared.args.extensions or []
if extension not in shared.args.extensions:
shared.args.extensions.append(extension)
else:
for extension in shared.settings['default_extensions']:
shared.args.extensions = shared.args.extensions or []
if extension not in shared.args.extensions:
shared.args.extensions.append(extension)
2023-05-05 22:14:56 -04:00
available_models = utils.get_available_models()
# Model defined through --model
if shared.args.model is not None:
shared.model_name = shared.args.model
# Only one model is available
elif len(available_models) == 1:
shared.model_name = available_models[0]
# Select the model from a command-line menu
elif shared.args.model_menu:
if len(available_models) == 0:
logger.error('No models are available! Please download at least one.')
sys.exit(0)
else:
print('The following models are available:\n')
for i, model in enumerate(available_models):
print(f'{i+1}. {model}')
print(f'\nWhich one do you want to load? 1-{len(available_models)}\n')
i = int(input()) - 1
print()
shared.model_name = available_models[i]
# If any model has been selected, load it
if shared.model_name != 'None':
model_settings = get_model_specific_settings(shared.model_name)
shared.settings.update(model_settings) # hijacking the interface defaults
update_model_parameters(model_settings, initial=True) # hijacking the command-line arguments
# Load the model
shared.model, shared.tokenizer = load_model(shared.model_name)
if shared.args.lora:
add_lora_to_model(shared.args.lora)
# Force a character to be loaded
if shared.is_chat():
shared.persistent_interface_state.update({
'mode': shared.settings['mode'],
'character_menu': shared.args.character or shared.settings['character'],
'instruction_template': shared.settings['instruction_template']
})
shared.generation_lock = Lock()
# Launch the web UI
create_interface()
while True:
time.sleep(0.5)
if shared.need_restart:
shared.need_restart = False
time.sleep(0.5)
shared.gradio['interface'].close()
time.sleep(0.5)
create_interface()