text-generation-webui/extensions/whisper_stt/script.py

120 lines
5.6 KiB
Python
Raw Normal View History

import base64
import gc
import io
2024-06-29 00:32:54 -04:00
from pathlib import Path
2023-03-09 06:46:50 -05:00
import gradio as gr
2024-06-29 00:32:54 -04:00
import numpy as np
import torch
import whisper
from pydub import AudioSegment
2023-05-09 21:49:39 -04:00
from modules import shared
2023-03-09 14:33:00 -05:00
2023-03-09 06:46:50 -05:00
input_hijack = {
'state': False,
'value': ["", ""]
}
# parameters which can be customized in settings.yaml of webui
params = {
'whipser_language': 'english',
'whipser_model': 'small.en',
'auto_submit': True
}
startup_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
WHISPERMODEL = whisper.load_model(params['whipser_model'], device=startup_device)
2023-03-09 06:46:50 -05:00
def chat_input_modifier(text, visible_text, state):
global input_hijack
if input_hijack['state']:
input_hijack['state'] = False
return input_hijack['value']
else:
return text, visible_text
def do_stt(audio, whipser_language):
# use pydub to convert sample_rate and sample_width for whisper input
dubaudio = AudioSegment.from_file(io.BytesIO(audio))
dubaudio = dubaudio.set_channels(1)
dubaudio = dubaudio.set_frame_rate(16000)
dubaudio = dubaudio.set_sample_width(2)
2023-03-09 06:46:50 -05:00
# same method to get the array as openai whisper repo used from wav file
audio_np = np.frombuffer(dubaudio.raw_data, np.int16).flatten().astype(np.float32) / 32768.0
2023-03-09 06:46:50 -05:00
if len(whipser_language) == 0:
result = WHISPERMODEL.transcribe(audio=audio_np)
else:
result = WHISPERMODEL.transcribe(audio=audio_np, language=whipser_language)
return result["text"]
2023-03-12 16:03:07 -04:00
2023-03-09 06:46:50 -05:00
def auto_transcribe(audio, auto_submit, whipser_language):
if audio is None or audio == "":
print("Whisper received no audio data")
2023-03-13 16:41:19 -04:00
return "", ""
audio_bytes = base64.b64decode(audio.split(',')[1])
transcription = do_stt(audio_bytes, whipser_language)
if auto_submit:
input_hijack.update({"state": True, "value": [transcription, transcription]})
return transcription
def reload_whispermodel(whisper_model_name: str, whisper_language: str, device: str):
if len(whisper_model_name) > 0:
global WHISPERMODEL
WHISPERMODEL = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
if device != "none":
if device == "cuda":
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
WHISPERMODEL = whisper.load_model(whisper_model_name, device=device)
params.update({"whipser_model": whisper_model_name})
if ".en" in whisper_model_name:
whisper_language = "english"
audio_update = gr.Audio.update(interactive=True)
else:
audio_update = gr.Audio.update(interactive=False)
return [whisper_model_name, whisper_language, str(device), audio_update]
2023-03-13 16:41:19 -04:00
2023-03-09 06:46:50 -05:00
def ui():
with gr.Accordion("Whisper STT", open=True):
with gr.Row():
audio = gr.Textbox(elem_id="audio-base64", visible=False)
record_button = gr.Button("Rec.", elem_id="record-button", elem_classes="custom-button")
with gr.Row():
with gr.Accordion("Settings", open=False):
auto_submit = gr.Checkbox(label='Submit the transcribed audio automatically', value=params['auto_submit'])
device_dropd = gr.Dropdown(label='Device', value=str(startup_device), choices=["cuda", "cpu", "none"])
whisper_model_dropd = gr.Dropdown(label='Whisper Model', value=params['whipser_model'], choices=["tiny.en", "base.en", "small.en", "medium.en", "tiny", "base", "small", "medium", "large"])
whisper_language = gr.Dropdown(label='Whisper Language', value=params['whipser_language'], choices=["english", "chinese", "german", "spanish", "russian", "korean", "french", "japanese", "portuguese", "turkish", "polish", "catalan", "dutch", "arabic", "swedish", "italian", "indonesian", "hindi", "finnish", "vietnamese", "hebrew", "ukrainian", "greek", "malay", "czech", "romanian", "danish", "hungarian", "tamil", "norwegian", "thai", "urdu", "croatian", "bulgarian", "lithuanian", "latin", "maori", "malayalam", "welsh", "slovak", "telugu", "persian", "latvian", "bengali", "serbian", "azerbaijani", "slovenian", "kannada", "estonian", "macedonian", "breton", "basque", "icelandic", "armenian", "nepali", "mongolian", "bosnian", "kazakh", "albanian", "swahili", "galician", "marathi", "punjabi", "sinhala", "khmer", "shona", "yoruba", "somali", "afrikaans", "occitan", "georgian", "belarusian", "tajik", "sindhi", "gujarati", "amharic", "yiddish", "lao", "uzbek", "faroese", "haitian creole", "pashto", "turkmen", "nynorsk", "maltese", "sanskrit", "luxembourgish", "myanmar", "tibetan", "tagalog", "malagasy", "assamese", "tatar", "hawaiian", "lingala", "hausa", "bashkir", "javanese", "sundanese"])
2023-04-13 09:40:27 -04:00
audio.change(
auto_transcribe, [audio, auto_submit, whisper_language], [shared.gradio['textbox']]).then(
None, auto_submit, None, _js="(check) => {if (check) { document.getElementById('Generate').click() }}")
device_dropd.input(reload_whispermodel, [whisper_model_dropd, whisper_language, device_dropd], [whisper_model_dropd, whisper_language, device_dropd, audio])
whisper_model_dropd.change(reload_whispermodel, [whisper_model_dropd, whisper_language, device_dropd], [whisper_model_dropd, whisper_language, device_dropd, audio])
whisper_language.change(lambda x: params.update({"whipser_language": x}), whisper_language, None)
auto_submit.change(lambda x: params.update({"auto_submit": x}), auto_submit, None)
2024-06-29 00:32:54 -04:00
def custom_js():
"""
Returns custom javascript as a string. It is applied whenever the web UI is
loaded.
:return:
"""
with open(Path(__file__).parent.resolve() / "script.js", "r") as f:
return f.read()