text-generation-webui/extensions/Training_PRO/train_utils.py

192 lines
6.8 KiB
Python
Raw Normal View History

2023-09-17 10:09:31 -04:00
import os
from modules import shared, utils
from pathlib import Path
import json
def list_subfoldersByTime(directory):
if not directory.endswith('/'):
directory += '/'
subfolders = []
path = directory
name_list = os.listdir(path)
full_list = [os.path.join(path,i) for i in name_list]
time_sorted_list = sorted(full_list, key=os.path.getmtime,reverse=True)
for entry in time_sorted_list:
if os.path.isdir(entry):
entry_str = f"{entry}" # Convert entry to a string
full_path = entry_str
entry_str = entry_str.replace('\\','/')
entry_str = entry_str.replace(f"{directory}", "") # Remove directory part
subfolders.append(entry_str)
return subfolders
def get_available_loras_local(_sortedByTime):
model_dir = shared.args.lora_dir # Update with the appropriate directory path
subfolders = []
if _sortedByTime:
subfolders = list_subfoldersByTime(model_dir)
else:
subfolders = utils.get_available_loras()
return subfolders
# FPHAM SPLIT BY SENTENCE BLOCK ===============
def split_sentences(text: str, cutoff_len: int):
sentences = []
sentence = ''
delimiters = ['. ', '? ', '! ', '... ', '.\n', '?\n', '!\n','...\n','</s>','<//>']
abbreviations = ['Mr. ', 'Mrs. ', 'Dr. ', 'Ms. ', 'St. ', 'Prof. ', 'Jr. ', 'Ltd. ', 'Capt. ', 'Col. ', 'Gen. ', 'Ave. ', 'Blvd. ', 'Co. ', 'Corp. ', 'Dept. ', 'Est. ', 'Gov. ', 'Inc. ', 'Ph.D. ', 'Univ. ']
errors = 0
max_cut = cutoff_len-1
prev_char = ''
for char in text:
sentence += char
if (any(sentence.endswith(delimiter) for delimiter in delimiters) and
not (prev_char.isupper() and len(sentence) >= 3 and sentence[-3] != ' ') and
not any(sentence.endswith(abbreviation) for abbreviation in abbreviations)):
tokens = shared.tokenizer.encode(sentence)
if len(tokens) > max_cut:
tokens = tokens[:max_cut]
sentence = shared.tokenizer.decode(tokens, skip_special_tokens=True)
errors = errors + 1
sentences.append({'text': sentence, 'size': len(tokens)})
sentence = ''
prev_char = char
if sentence:
tokens = shared.tokenizer.encode(sentence)
if len(tokens) > max_cut:
tokens = tokens[:max_cut]
sentence = shared.tokenizer.decode(tokens, skip_special_tokens=True)
errors = errors + 1
sentences.append({'text': sentence, 'size': len(tokens)})
if errors > 0:
print(f"Trimmed sentences beyond Cutoff Length: {errors}")
return sentences
# The goal of following code is to create blocks of text + overlapping blocks while:
# respects sentence boundaries
# always uses all the text
# hard cut defined by hard_cut_string or </s> will always end at the end of data block
# no overlapping blocks will be created across hard cut or across </s> token
def precise_cut(text: str, overlap: bool, min_chars_cut: int, eos_to_hc: bool, cutoff_len: int, hard_cut_string: str):
debug_slicer = False
EOSX_str = '<//>' #hardcut placeholder
EOS_str = '</s>'
print("Precise raw text slicer: ON")
cut_string = hard_cut_string.replace('\\n', '\n')
text = text.replace(cut_string, EOSX_str)
sentences = split_sentences(text, cutoff_len)
print(f"Sentences: {len(sentences)}")
sentencelist = []
currentSentence = ''
totalLength = 0
max_cut = cutoff_len-1
half_cut = cutoff_len//2
halfcut_length = 0
edgeindex = []
half_index = 0
for index, item in enumerate(sentences):
if halfcut_length+ item['size'] < half_cut:
halfcut_length += item['size']
half_index = index
else:
edgeindex.append(half_index)
halfcut_length = -2 * max_cut
if totalLength + item['size'] < max_cut and not currentSentence.endswith(EOSX_str):
currentSentence += item['text']
totalLength += item['size']
else:
if len(currentSentence.strip()) > min_chars_cut:
sentencelist.append(currentSentence.strip())
currentSentence = item['text']
totalLength = item['size']
halfcut_length = item['size']
if len(currentSentence.strip()) > min_chars_cut:
sentencelist.append(currentSentence.strip())
unique_blocks = len(sentencelist)
print(f"Text Blocks: {unique_blocks}")
#overlap strategies:
# don't overlap across HARD CUT (EOSX)
if overlap:
for edge_idx in edgeindex:
currentSentence = ''
totalLength = 0
for item in sentences[edge_idx:]:
if totalLength + item['size'] < max_cut:
currentSentence += item['text']
totalLength += item['size']
else:
#if by chance EOSX is at the end then it's acceptable
if currentSentence.endswith(EOSX_str) and len(currentSentence.strip()) > min_chars_cut:
sentencelist.append(currentSentence.strip())
# otherwise don't cross hard cut
elif EOSX_str not in currentSentence and len(currentSentence.strip()) > min_chars_cut:
sentencelist.append(currentSentence.strip())
currentSentence = ''
totalLength = 0
break
print(f"+ Overlapping blocks: {len(sentencelist)-unique_blocks}")
num_EOS = 0
for i in range(len(sentencelist)):
if eos_to_hc:
sentencelist[i] = sentencelist[i].replace(EOSX_str, EOS_str)
else:
sentencelist[i] = sentencelist[i].replace(EOSX_str, '')
#someone may have had stop strings in the raw text...
sentencelist[i] = sentencelist[i].replace("</s></s>", EOS_str)
num_EOS += sentencelist[i].count(EOS_str)
if num_EOS > 0:
print(f"+ EOS count: {num_EOS}")
#final check for useless lines
sentencelist = [item for item in sentencelist if item.strip() != "</s>"]
sentencelist = [item for item in sentencelist if item.strip() != ""]
if debug_slicer:
# Write the log file
Path('logs').mkdir(exist_ok=True)
sentencelist_dict = {index: sentence for index, sentence in enumerate(sentencelist)}
output_file = "logs/sentencelist.json"
with open(output_file, 'w') as f:
json.dump(sentencelist_dict, f,indent=2)
return sentencelist