text-generation-webui/modules/monkey_patch_gptq_lora.py

40 lines
1.3 KiB
Python
Raw Normal View History

2023-04-16 22:26:52 -04:00
# Copied from https://github.com/johnsmith0031/alpaca_lora_4bit
from pathlib import Path
import alpaca_lora_4bit.autograd_4bit as autograd_4bit
from alpaca_lora_4bit.amp_wrapper import AMPWrapper
from alpaca_lora_4bit.autograd_4bit import (
2023-06-25 00:44:36 -04:00
Autograd4bitQuantLinear,
load_llama_model_4bit_low_ram
)
from alpaca_lora_4bit.models import Linear4bitLt
from alpaca_lora_4bit.monkeypatch.peft_tuners_lora_monkey_patch import (
replace_peft_model_with_int4_lora_model
2023-06-25 00:44:36 -04:00
)
2023-04-16 22:26:52 -04:00
from modules import shared
from modules.GPTQ_loader import find_quantized_model_file
replace_peft_model_with_int4_lora_model()
2023-04-16 22:26:52 -04:00
2023-05-03 20:43:17 -04:00
2023-04-16 22:26:52 -04:00
def load_model_llama(model_name):
config_path = str(Path(f'{shared.args.model_dir}/{model_name}'))
model_path = str(find_quantized_model_file(model_name))
model, tokenizer = load_llama_model_4bit_low_ram(config_path, model_path, groupsize=shared.args.groupsize, is_v1_model=False)
for _, m in model.named_modules():
2023-04-16 22:26:52 -04:00
if isinstance(m, Autograd4bitQuantLinear) or isinstance(m, Linear4bitLt):
if m.is_v1_model:
m.zeros = m.zeros.half()
m.scales = m.scales.half()
m.bias = m.bias.half()
2023-04-16 22:26:52 -04:00
autograd_4bit.auto_switch = True
2023-04-25 20:20:26 -04:00
model.half()
wrapper = AMPWrapper(model)
wrapper.apply_generate()
2023-04-16 22:26:52 -04:00
return model, tokenizer