2023-03-13 23:49:10 -04:00
import base64
import io
2023-03-22 00:47:54 -04:00
import re
2023-04-07 20:36:04 -04:00
import time
from datetime import date
2023-03-13 23:49:10 -04:00
from pathlib import Path
import gradio as gr
2023-03-19 18:24:41 -04:00
import requests
2023-03-13 23:49:10 -04:00
import torch
2023-03-19 18:24:41 -04:00
from PIL import Image
2023-03-13 23:49:10 -04:00
2023-05-09 21:49:39 -04:00
import modules . shared as shared
from modules . models import reload_model , unload_model
2023-06-27 16:31:54 -04:00
from modules . ui import create_refresh_button
2023-05-09 21:49:39 -04:00
2023-03-13 23:49:10 -04:00
torch . _C . _jit_set_profiling_mode ( False )
2023-04-06 23:15:45 -04:00
# parameters which can be customized in settings.json of webui
2023-03-13 23:49:10 -04:00
params = {
' address ' : ' http://127.0.0.1:7860 ' ,
2023-04-07 20:36:04 -04:00
' mode ' : 0 , # modes of operation: 0 (Manual only), 1 (Immersive/Interactive - looks for words to trigger), 2 (Picturebook Adventure - Always on)
' manage_VRAM ' : False ,
2023-03-13 23:49:10 -04:00
' save_img ' : False ,
2023-04-07 20:36:04 -04:00
' SD_model ' : ' NeverEndingDream ' , # not used right now
' prompt_prefix ' : ' (Masterpiece:1.1), detailed, intricate, colorful ' ,
2023-03-13 23:49:10 -04:00
' negative_prompt ' : ' (worst quality, low quality:1.3) ' ,
2023-04-07 20:36:04 -04:00
' width ' : 512 ,
' height ' : 512 ,
2023-04-21 16:49:18 -04:00
' denoising_strength ' : 0.61 ,
2023-04-07 20:36:04 -04:00
' restore_faces ' : False ,
2023-04-21 16:49:18 -04:00
' enable_hr ' : False ,
' hr_upscaler ' : ' ESRGAN_4x ' ,
' hr_scale ' : ' 1.0 ' ,
2023-04-07 20:36:04 -04:00
' seed ' : - 1 ,
2023-06-27 17:47:35 -04:00
' sampler_name ' : ' DPM++ 2M Karras ' ,
2023-04-07 20:36:04 -04:00
' steps ' : 32 ,
2023-06-27 16:29:27 -04:00
' cfg_scale ' : 7 ,
2023-06-27 16:49:18 -04:00
' textgen_prefix ' : ' Please provide a detailed and vivid description of [subject] ' ,
' sd_checkpoint ' : ' ' ,
' checkpoint_list ' : [ " " ]
2023-03-13 23:49:10 -04:00
}
2023-04-07 20:36:04 -04:00
def give_VRAM_priority ( actor ) :
global shared , params
if actor == ' SD ' :
unload_model ( )
print ( " Requesting Auto1111 to re-load last checkpoint used... " )
response = requests . post ( url = f ' { params [ " address " ] } /sdapi/v1/reload-checkpoint ' , json = ' ' )
response . raise_for_status ( )
elif actor == ' LLM ' :
print ( " Requesting Auto1111 to vacate VRAM... " )
response = requests . post ( url = f ' { params [ " address " ] } /sdapi/v1/unload-checkpoint ' , json = ' ' )
response . raise_for_status ( )
reload_model ( )
elif actor == ' set ' :
print ( " VRAM mangement activated -- requesting Auto1111 to vacate VRAM... " )
response = requests . post ( url = f ' { params [ " address " ] } /sdapi/v1/unload-checkpoint ' , json = ' ' )
response . raise_for_status ( )
elif actor == ' reset ' :
print ( " VRAM mangement deactivated -- requesting Auto1111 to reload checkpoint " )
response = requests . post ( url = f ' { params [ " address " ] } /sdapi/v1/reload-checkpoint ' , json = ' ' )
response . raise_for_status ( )
else :
raise RuntimeError ( f ' Managing VRAM: " { actor } " is not a known state! ' )
response . raise_for_status ( )
del response
if params [ ' manage_VRAM ' ] :
give_VRAM_priority ( ' set ' )
2023-04-06 23:15:45 -04:00
SD_models = [ ' NeverEndingDream ' ] # TODO: get with http://{address}}/sdapi/v1/sd-models and allow user to select
2023-03-13 23:49:10 -04:00
2023-04-06 23:15:45 -04:00
picture_response = False # specifies if the next model response should appear as a picture
2023-03-13 23:49:10 -04:00
2023-05-09 21:49:39 -04:00
2023-03-13 23:49:10 -04:00
def remove_surrounded_chars ( string ) :
2023-03-22 00:47:54 -04:00
# this expression matches to 'as few symbols as possible (0 upwards) between any asterisks' OR
# 'as few symbols as possible (0 upwards) between an asterisk and the end of the string'
2023-04-06 23:15:45 -04:00
return re . sub ( ' \ *[^ \ *]*?( \ *|$) ' , ' ' , string )
2023-03-13 23:49:10 -04:00
2023-04-07 20:36:04 -04:00
def triggers_are_in ( string ) :
string = remove_surrounded_chars ( string )
# regex searches for send|main|message|me (at the end of the word) followed by
# a whole word of image|pic|picture|photo|snap|snapshot|selfie|meme(s),
# (?aims) are regex parser flags
return bool ( re . search ( ' (?aims)(send|mail|message|me) \\ b.+? \\ b(image|pic(ture)?|photo|snap(shot)?|selfie|meme)s? \\ b ' , string ) )
2023-04-06 23:15:45 -04:00
2023-05-05 17:53:03 -04:00
def state_modifier ( state ) :
if picture_response :
state [ ' stream ' ] = False
return state
2023-03-13 23:49:10 -04:00
def input_modifier ( string ) :
"""
This function is applied to your text inputs before
they are fed into the model .
"""
2023-04-07 20:36:04 -04:00
global params
2023-03-22 00:47:54 -04:00
2023-04-07 20:36:04 -04:00
if not params [ ' mode ' ] == 1 : # if not in immersive/interactive mode, do nothing
return string
if triggers_are_in ( string ) : # if we're in it, check for trigger words
toggle_generation ( True )
string = string . lower ( )
if " of " in string :
subject = string . split ( ' of ' , 1 ) [ 1 ] # subdivide the string once by the first 'of' instance and get what's coming after it
2023-06-27 16:49:18 -04:00
string = params [ ' textgen_prefix ' ] . replace ( " [subject] " , subject )
2023-04-07 20:36:04 -04:00
else :
2023-06-27 16:49:18 -04:00
string = params [ ' textgen_prefix ' ] . replace ( " [subject] " , " your appearance, your surroundings and what you are doing right now " )
2023-03-13 23:49:10 -04:00
return string
# Get and save the Stable Diffusion-generated picture
def get_SD_pictures ( description ) :
2023-06-27 16:49:18 -04:00
2023-04-07 20:36:04 -04:00
global params
if params [ ' manage_VRAM ' ] :
give_VRAM_priority ( ' SD ' )
2023-03-13 23:49:10 -04:00
payload = {
" prompt " : params [ ' prompt_prefix ' ] + description ,
2023-04-07 20:36:04 -04:00
" seed " : params [ ' seed ' ] ,
" sampler_name " : params [ ' sampler_name ' ] ,
2023-04-21 16:49:18 -04:00
" enable_hr " : params [ ' enable_hr ' ] ,
" hr_scale " : params [ ' hr_scale ' ] ,
" hr_upscaler " : params [ ' hr_upscaler ' ] ,
" denoising_strength " : params [ ' denoising_strength ' ] ,
2023-04-07 20:36:04 -04:00
" steps " : params [ ' steps ' ] ,
" cfg_scale " : params [ ' cfg_scale ' ] ,
" width " : params [ ' width ' ] ,
" height " : params [ ' height ' ] ,
2023-03-13 23:49:10 -04:00
" restore_faces " : params [ ' restore_faces ' ] ,
2023-04-21 16:49:18 -04:00
" override_settings_restore_afterwards " : True ,
2023-03-13 23:49:10 -04:00
" negative_prompt " : params [ ' negative_prompt ' ]
}
2023-04-06 23:15:45 -04:00
2023-04-07 20:36:04 -04:00
print ( f ' Prompting the image generator via the API on { params [ " address " ] } ... ' )
2023-03-13 23:49:10 -04:00
response = requests . post ( url = f ' { params [ " address " ] } /sdapi/v1/txt2img ' , json = payload )
2023-04-07 20:36:04 -04:00
response . raise_for_status ( )
2023-03-13 23:49:10 -04:00
r = response . json ( )
visible_result = " "
for img_str in r [ ' images ' ] :
if params [ ' save_img ' ] :
2023-04-12 10:42:30 -04:00
img_data = base64 . b64decode ( img_str )
2023-04-07 20:36:04 -04:00
variadic = f ' { date . today ( ) . strftime ( " % Y_ % m_ %d " ) } / { shared . character } _ { int ( time . time ( ) ) } '
output_file = Path ( f ' extensions/sd_api_pictures/outputs/ { variadic } .png ' )
output_file . parent . mkdir ( parents = True , exist_ok = True )
2023-04-12 10:42:30 -04:00
with open ( output_file . as_posix ( ) , ' wb ' ) as f :
f . write ( img_data )
2023-04-07 20:36:04 -04:00
visible_result = visible_result + f ' <img src= " /file/extensions/sd_api_pictures/outputs/ { variadic } .png " alt= " { description } " style= " max-width: unset; max-height: unset; " > \n '
else :
2023-04-12 10:42:30 -04:00
image = Image . open ( io . BytesIO ( base64 . b64decode ( img_str . split ( " , " , 1 ) [ 0 ] ) ) )
2023-04-07 20:36:04 -04:00
# lower the resolution of received images for the chat, otherwise the log size gets out of control quickly with all the base64 values in visible history
image . thumbnail ( ( 300 , 300 ) )
buffered = io . BytesIO ( )
image . save ( buffered , format = " JPEG " )
buffered . seek ( 0 )
image_bytes = buffered . getvalue ( )
img_str = " data:image/jpeg;base64, " + base64 . b64encode ( image_bytes ) . decode ( )
visible_result = visible_result + f ' <img src= " { img_str } " alt= " { description } " > \n '
if params [ ' manage_VRAM ' ] :
give_VRAM_priority ( ' LLM ' )
2023-04-06 23:15:45 -04:00
2023-03-13 23:49:10 -04:00
return visible_result
# TODO: how do I make the UI history ignore the resulting pictures (I don't want HTML to appear in history)
# and replace it with 'text' for the purposes of logging?
def output_modifier ( string ) :
"""
This function is applied to the model outputs .
"""
2023-04-07 20:36:04 -04:00
global picture_response , params
2023-03-13 23:49:10 -04:00
if not picture_response :
return string
string = remove_surrounded_chars ( string )
string = string . replace ( ' " ' , ' ' )
string = string . replace ( ' “ ' , ' ' )
string = string . replace ( ' \n ' , ' ' )
string = string . strip ( )
if string == ' ' :
string = ' no viable description in reply, try regenerating '
2023-04-07 20:36:04 -04:00
return string
2023-03-13 23:49:10 -04:00
2023-04-07 20:36:04 -04:00
text = " "
if ( params [ ' mode ' ] < 2 ) :
toggle_generation ( False )
text = f ' *Sends a picture which portrays: “ { string } ”* '
else :
text = string
2023-03-13 23:49:10 -04:00
2023-04-07 20:36:04 -04:00
string = get_SD_pictures ( string ) + " \n " + text
2023-03-13 23:49:10 -04:00
2023-04-07 20:36:04 -04:00
return string
2023-03-13 23:49:10 -04:00
2023-04-06 23:15:45 -04:00
2023-03-13 23:49:10 -04:00
def bot_prefix_modifier ( string ) :
"""
This function is only applied in chat mode . It modifies
the prefix text for the Bot and can be used to bias its
behavior .
"""
return string
2023-04-06 23:15:45 -04:00
2023-04-07 20:36:04 -04:00
def toggle_generation ( * args ) :
2023-05-05 17:53:03 -04:00
global picture_response , shared
2023-04-07 20:36:04 -04:00
if not args :
picture_response = not picture_response
else :
picture_response = args [ 0 ]
shared . processing_message = " *Is sending a picture...* " if picture_response else " *Is typing...* "
def filter_address ( address ) :
address = address . strip ( )
# address = re.sub('http(s)?:\/\/|\/$','',address) # remove starting http:// OR https:// OR trailing slash
address = re . sub ( ' \ /$ ' , ' ' , address ) # remove trailing /s
if not address . startswith ( ' http ' ) :
address = ' http:// ' + address
return address
def SD_api_address_update ( address ) :
global params
msg = " ✔️ SD API is found on: "
address = filter_address ( address )
params . update ( { " address " : address } )
try :
response = requests . get ( url = f ' { params [ " address " ] } /sdapi/v1/sd-models ' )
response . raise_for_status ( )
# r = response.json()
except :
msg = " ❌ No SD API endpoint on: "
return gr . Textbox . update ( label = msg )
2023-03-13 23:49:10 -04:00
2023-05-09 21:49:39 -04:00
2023-05-16 23:03:39 -04:00
def custom_css ( ) :
path_to_css = Path ( __file__ ) . parent . resolve ( ) / ' style.css '
return open ( path_to_css , ' r ' ) . read ( )
2023-06-27 16:49:18 -04:00
2023-06-27 16:29:27 -04:00
def get_checkpoints ( ) :
global params
try :
models = requests . get ( url = f ' { params [ " address " ] } /sdapi/v1/sd-models ' )
options = requests . get ( url = f ' { params [ " address " ] } /sdapi/v1/options ' )
options_json = options . json ( )
params [ ' sd_checkpoint ' ] = options_json [ ' sd_model_checkpoint ' ]
params [ ' checkpoint_list ' ] = [ result [ " title " ] for result in models . json ( ) ]
except :
params [ ' sd_checkpoint ' ] = " "
params [ ' checkpoint_list ' ] = [ ]
return gr . update ( choices = params [ ' checkpoint_list ' ] , value = params [ ' sd_checkpoint ' ] )
2023-06-27 16:49:18 -04:00
2023-06-27 16:29:27 -04:00
def load_checkpoint ( checkpoint ) :
payload = {
" sd_model_checkpoint " : checkpoint
}
requests . post ( url = f ' { params [ " address " ] } /sdapi/v1/options ' , json = payload )
2023-05-16 23:03:39 -04:00
2023-06-27 16:49:18 -04:00
2023-06-27 16:31:54 -04:00
def get_samplers ( ) :
try :
response = requests . get ( url = f ' { params [ " address " ] } /sdapi/v1/samplers ' )
response . raise_for_status ( )
samplers = [ x [ " name " ] for x in response . json ( ) ]
except :
samplers = [ ]
return samplers
2023-03-13 23:49:10 -04:00
def ui ( ) :
# Gradio elements
2023-04-07 20:36:04 -04:00
# gr.Markdown('### Stable Diffusion API Pictures') # Currently the name of extension is shown as the title
2023-04-21 16:49:18 -04:00
with gr . Accordion ( " Parameters " , open = True , elem_classes = " SDAP " ) :
2023-03-13 23:49:10 -04:00
with gr . Row ( ) :
2023-04-07 20:36:04 -04:00
address = gr . Textbox ( placeholder = params [ ' address ' ] , value = params [ ' address ' ] , label = ' Auto1111 \' s WebUI address ' )
2023-04-21 16:49:18 -04:00
modes_list = [ " Manual " , " Immersive/Interactive " , " Picturebook/Adventure " ]
mode = gr . Dropdown ( modes_list , value = modes_list [ params [ ' mode ' ] ] , label = " Mode of operation " , type = " index " )
2023-04-07 20:36:04 -04:00
with gr . Column ( scale = 1 , min_width = 300 ) :
manage_VRAM = gr . Checkbox ( value = params [ ' manage_VRAM ' ] , label = ' Manage VRAM ' )
save_img = gr . Checkbox ( value = params [ ' save_img ' ] , label = ' Keep original images and use them in chat ' )
2023-04-06 23:15:45 -04:00
2023-04-07 20:36:04 -04:00
force_pic = gr . Button ( " Force the picture response " )
suppr_pic = gr . Button ( " Suppress the picture response " )
2023-06-27 16:29:27 -04:00
with gr . Row ( ) :
checkpoint = gr . Dropdown ( params [ ' checkpoint_list ' ] , value = params [ ' sd_checkpoint ' ] , label = " Checkpoint " , type = " value " )
update_checkpoints = gr . Button ( " Get list of checkpoints " )
2023-03-13 23:49:10 -04:00
with gr . Accordion ( " Generation parameters " , open = False ) :
prompt_prefix = gr . Textbox ( placeholder = params [ ' prompt_prefix ' ] , value = params [ ' prompt_prefix ' ] , label = ' Prompt Prefix (best used to describe the look of the character) ' )
2023-06-27 16:49:18 -04:00
textgen_prefix = gr . Textbox ( placeholder = params [ ' textgen_prefix ' ] , value = params [ ' textgen_prefix ' ] , label = ' textgen prefix (type [subject] where the subject should be placed) ' )
2023-04-21 16:49:18 -04:00
negative_prompt = gr . Textbox ( placeholder = params [ ' negative_prompt ' ] , value = params [ ' negative_prompt ' ] , label = ' Negative Prompt ' )
2023-03-13 23:49:10 -04:00
with gr . Row ( ) :
2023-04-07 20:36:04 -04:00
with gr . Column ( ) :
width = gr . Slider ( 256 , 768 , value = params [ ' width ' ] , step = 64 , label = ' Width ' )
height = gr . Slider ( 256 , 768 , value = params [ ' height ' ] , step = 64 , label = ' Height ' )
2023-06-27 16:31:54 -04:00
with gr . Column ( variant = " compact " , elem_id = " sampler_col " ) :
with gr . Row ( elem_id = " sampler_row " ) :
sampler_name = gr . Dropdown ( value = params [ ' sampler_name ' ] , label = ' Sampling method ' , elem_id = " sampler_box " )
create_refresh_button ( sampler_name , lambda : None , lambda : { ' choices ' : get_samplers ( ) } , ' refresh-button ' )
steps = gr . Slider ( 1 , 150 , value = params [ ' steps ' ] , step = 1 , label = " Sampling steps " , elem_id = " steps_box " )
2023-04-07 20:36:04 -04:00
with gr . Row ( ) :
2023-04-21 16:49:18 -04:00
seed = gr . Number ( label = " Seed " , value = params [ ' seed ' ] , elem_id = " seed_box " )
cfg_scale = gr . Number ( label = " CFG Scale " , value = params [ ' cfg_scale ' ] , elem_id = " cfg_box " )
with gr . Column ( ) as hr_options :
restore_faces = gr . Checkbox ( value = params [ ' restore_faces ' ] , label = ' Restore faces ' )
2023-05-09 21:49:39 -04:00
enable_hr = gr . Checkbox ( value = params [ ' enable_hr ' ] , label = ' Hires. fix ' )
2023-04-21 16:49:18 -04:00
with gr . Row ( visible = params [ ' enable_hr ' ] , elem_classes = " hires_opts " ) as hr_options :
2023-05-09 21:49:39 -04:00
hr_scale = gr . Slider ( 1 , 4 , value = params [ ' hr_scale ' ] , step = 0.1 , label = ' Upscale by ' )
denoising_strength = gr . Slider ( 0 , 1 , value = params [ ' denoising_strength ' ] , step = 0.01 , label = ' Denoising strength ' )
hr_upscaler = gr . Textbox ( placeholder = params [ ' hr_upscaler ' ] , value = params [ ' hr_upscaler ' ] , label = ' Upscaler ' )
2023-04-06 23:15:45 -04:00
2023-03-13 23:49:10 -04:00
# Event functions to update the parameters in the backend
2023-04-07 20:36:04 -04:00
address . change ( lambda x : params . update ( { " address " : filter_address ( x ) } ) , address , None )
mode . select ( lambda x : params . update ( { " mode " : x } ) , mode , None )
mode . select ( lambda x : toggle_generation ( x > 1 ) , inputs = mode , outputs = None )
manage_VRAM . change ( lambda x : params . update ( { " manage_VRAM " : x } ) , manage_VRAM , None )
manage_VRAM . change ( lambda x : give_VRAM_priority ( ' set ' if x else ' reset ' ) , inputs = manage_VRAM , outputs = None )
2023-03-13 23:49:10 -04:00
save_img . change ( lambda x : params . update ( { " save_img " : x } ) , save_img , None )
2023-04-07 20:36:04 -04:00
address . submit ( fn = SD_api_address_update , inputs = address , outputs = address )
2023-03-13 23:49:10 -04:00
prompt_prefix . change ( lambda x : params . update ( { " prompt_prefix " : x } ) , prompt_prefix , None )
2023-06-27 16:49:18 -04:00
textgen_prefix . change ( lambda x : params . update ( { " textgen_prefix " : x } ) , textgen_prefix , None )
2023-03-13 23:49:10 -04:00
negative_prompt . change ( lambda x : params . update ( { " negative_prompt " : x } ) , negative_prompt , None )
2023-04-07 20:36:04 -04:00
width . change ( lambda x : params . update ( { " width " : x } ) , width , None )
height . change ( lambda x : params . update ( { " height " : x } ) , height , None )
2023-04-21 16:49:18 -04:00
hr_scale . change ( lambda x : params . update ( { " hr_scale " : x } ) , hr_scale , None )
denoising_strength . change ( lambda x : params . update ( { " denoising_strength " : x } ) , denoising_strength , None )
restore_faces . change ( lambda x : params . update ( { " restore_faces " : x } ) , restore_faces , None )
hr_upscaler . change ( lambda x : params . update ( { " hr_upscaler " : x } ) , hr_upscaler , None )
enable_hr . change ( lambda x : params . update ( { " enable_hr " : x } ) , enable_hr , None )
enable_hr . change ( lambda x : hr_options . update ( visible = params [ " enable_hr " ] ) , enable_hr , hr_options )
2023-06-27 16:29:27 -04:00
update_checkpoints . click ( get_checkpoints , None , checkpoint )
checkpoint . change ( lambda x : params . update ( { " sd_checkpoint " : x } ) , checkpoint , None )
checkpoint . change ( load_checkpoint , checkpoint , None )
2023-04-07 20:36:04 -04:00
sampler_name . change ( lambda x : params . update ( { " sampler_name " : x } ) , sampler_name , None )
steps . change ( lambda x : params . update ( { " steps " : x } ) , steps , None )
seed . change ( lambda x : params . update ( { " seed " : x } ) , seed , None )
cfg_scale . change ( lambda x : params . update ( { " cfg_scale " : x } ) , cfg_scale , None )
2023-03-13 23:49:10 -04:00
2023-04-07 20:36:04 -04:00
force_pic . click ( lambda x : toggle_generation ( True ) , inputs = force_pic , outputs = None )
suppr_pic . click ( lambda x : toggle_generation ( False ) , inputs = suppr_pic , outputs = None )