text-generation-webui/download-model.py

353 lines
14 KiB
Python
Raw Normal View History

2023-01-06 17:57:31 -05:00
'''
2023-06-20 22:36:56 -04:00
Downloads models from Hugging Face to models/username_modelname.
2023-01-06 17:57:31 -05:00
Example:
2023-04-09 16:00:59 -04:00
python download-model.py facebook/opt-1.3b
2023-01-06 17:57:31 -05:00
'''
import argparse
import base64
import datetime
2023-03-31 00:31:47 -04:00
import hashlib
import json
import os
2023-06-20 22:36:56 -04:00
import re
import sys
from pathlib import Path
from time import sleep
import requests
import tqdm
from requests.adapters import HTTPAdapter
from requests.exceptions import ConnectionError, RequestException, Timeout
from tqdm.contrib.concurrent import thread_map
base = os.environ.get("HF_ENDPOINT") or "https://huggingface.co"
class ModelDownloader:
2023-07-12 14:33:25 -04:00
def __init__(self, max_retries=5):
self.max_retries = max_retries
self.session = self.get_session()
def get_session(self):
session = requests.Session()
if self.max_retries:
session.mount('https://cdn-lfs.huggingface.co', HTTPAdapter(max_retries=self.max_retries))
session.mount('https://huggingface.co', HTTPAdapter(max_retries=self.max_retries))
if os.getenv('HF_USER') is not None and os.getenv('HF_PASS') is not None:
session.auth = (os.getenv('HF_USER'), os.getenv('HF_PASS'))
try:
from huggingface_hub import get_token
token = get_token()
except ImportError:
token = os.getenv("HF_TOKEN")
if token is not None:
session.headers = {'authorization': f'Bearer {token}'}
return session
def sanitize_model_and_branch_names(self, model, branch):
if model[-1] == '/':
model = model[:-1]
if model.startswith(base + '/'):
model = model[len(base) + 1:]
model_parts = model.split(":")
model = model_parts[0] if len(model_parts) > 0 else model
branch = model_parts[1] if len(model_parts) > 1 else branch
if branch is None:
branch = "main"
else:
pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
if not pattern.match(branch):
raise ValueError(
"Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
return model, branch
def get_download_links_from_huggingface(self, model, branch, text_only=False, specific_file=None):
session = self.session
page = f"/api/models/{model}/tree/{branch}"
cursor = b""
links = []
sha256 = []
classifications = []
has_pytorch = False
has_pt = False
has_gguf = False
has_safetensors = False
is_lora = False
while True:
url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "")
r = session.get(url, timeout=10)
r.raise_for_status()
content = r.content
dict = json.loads(content)
if len(dict) == 0:
break
for i in range(len(dict)):
fname = dict[i]['path']
if specific_file not in [None, ''] and fname != specific_file:
continue
if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')):
is_lora = True
is_pytorch = re.match(r"(pytorch|adapter|gptq)_model.*\.bin", fname)
is_safetensors = re.match(r".*\.safetensors", fname)
is_pt = re.match(r".*\.pt", fname)
2023-08-26 04:06:59 -04:00
is_gguf = re.match(r'.*\.gguf', fname)
is_tiktoken = re.match(r".*\.tiktoken", fname)
is_tokenizer = re.match(r"(tokenizer|ice|spiece).*\.model", fname) or is_tiktoken
is_text = re.match(r".*\.(txt|json|py|md)", fname) or is_tokenizer
2023-09-11 10:30:56 -04:00
if any((is_pytorch, is_safetensors, is_pt, is_gguf, is_tokenizer, is_text)):
if 'lfs' in dict[i]:
sha256.append([fname, dict[i]['lfs']['oid']])
if is_text:
links.append(f"{base}/{model}/resolve/{branch}/{fname}")
classifications.append('text')
continue
if not text_only:
links.append(f"{base}/{model}/resolve/{branch}/{fname}")
if is_safetensors:
has_safetensors = True
classifications.append('safetensors')
elif is_pytorch:
has_pytorch = True
classifications.append('pytorch')
elif is_pt:
has_pt = True
classifications.append('pt')
2023-08-26 04:06:59 -04:00
elif is_gguf:
has_gguf = True
2023-08-26 04:06:59 -04:00
classifications.append('gguf')
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
cursor = base64.b64encode(cursor)
cursor = cursor.replace(b'=', b'%3D')
# If both pytorch and safetensors are available, download safetensors only
# Also if GGUF and safetensors are available, download only safetensors
# (why do people do this?)
if (has_pytorch or has_pt or has_gguf) and has_safetensors:
has_gguf = False
for i in range(len(classifications) - 1, -1, -1):
if classifications[i] in ['pytorch', 'pt', 'gguf']:
links.pop(i)
# For GGUF, try to download only the Q4_K_M if no specific file is specified.
2023-12-08 08:01:25 -05:00
# If not present, exclude all GGUFs, as that's likely a repository with both
# GGUF and fp16 files.
if has_gguf and specific_file is None:
has_q4km = False
for i in range(len(classifications) - 1, -1, -1):
if 'q4_k_m' in links[i].lower():
has_q4km = True
if has_q4km:
for i in range(len(classifications) - 1, -1, -1):
2023-12-08 08:01:25 -05:00
if 'q4_k_m' not in links[i].lower():
links.pop(i)
else:
for i in range(len(classifications) - 1, -1, -1):
if links[i].lower().endswith('.gguf'):
links.pop(i)
2023-09-11 10:30:56 -04:00
is_llamacpp = has_gguf and specific_file is not None
return links, sha256, is_lora, is_llamacpp
def get_output_folder(self, model, branch, is_lora, is_llamacpp=False, model_dir=None):
if model_dir:
base_folder = model_dir
else:
base_folder = 'models' if not is_lora else 'loras'
2023-09-11 10:57:38 -04:00
# If the model is of type GGUF, save directly in the base_folder
if is_llamacpp:
return Path(base_folder)
output_folder = f"{'_'.join(model.split('/')[-2:])}"
if branch != 'main':
output_folder += f'_{branch}'
2023-06-20 22:25:58 -04:00
output_folder = Path(base_folder) / output_folder
return output_folder
def get_single_file(self, url, output_folder, start_from_scratch=False):
filename = Path(url.rsplit('/', 1)[1])
output_path = output_folder / filename
max_retries = 7
attempt = 0
while attempt < max_retries:
attempt += 1
session = self.session
headers = {}
mode = 'wb'
try:
if output_path.exists() and not start_from_scratch:
# Resume download
r = session.get(url, stream=True, timeout=20)
total_size = int(r.headers.get('content-length', 0))
if output_path.stat().st_size >= total_size:
return
headers = {'Range': f'bytes={output_path.stat().st_size}-'}
mode = 'ab'
with session.get(url, stream=True, headers=headers, timeout=30) as r:
r.raise_for_status() # If status is not 2xx, raise an error
total_size = int(r.headers.get('content-length', 0))
block_size = 1024 * 1024 # 1MB
2024-07-29 01:21:56 -04:00
filename_str = str(filename) # Convert PosixPath to string if necessary
tqdm_kwargs = {
'total': total_size,
2024-07-29 01:21:56 -04:00
'unit': 'B',
'unit_scale': True,
2024-07-29 01:21:56 -04:00
'unit_divisor': 1024,
'bar_format': '{desc}{percentage:3.0f}%|{bar:50}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}]',
'desc': f"{filename_str}: "
}
if 'COLAB_GPU' in os.environ:
tqdm_kwargs.update({
'position': 0,
'leave': True
})
with open(output_path, mode) as f:
with tqdm.tqdm(**tqdm_kwargs) as t:
count = 0
for data in r.iter_content(block_size):
f.write(data)
t.update(len(data))
if total_size != 0 and self.progress_bar is not None:
count += len(data)
2024-07-29 01:21:56 -04:00
self.progress_bar(float(count) / float(total_size), f"{filename_str}")
break # Exit loop if successful
except (RequestException, ConnectionError, Timeout) as e:
print(f"Error downloading {filename}: {e}.")
print(f"That was attempt {attempt}/{max_retries}.", end=' ')
if attempt < max_retries:
print(f"Retry begins in {2 ** attempt} seconds.")
sleep(2 ** attempt)
else:
print("Failed to download after the maximum number of attempts.")
def start_download_threads(self, file_list, output_folder, start_from_scratch=False, threads=4):
thread_map(lambda url: self.get_single_file(url, output_folder, start_from_scratch=start_from_scratch), file_list, max_workers=threads, disable=True)
def download_model_files(self, model, branch, links, sha256, output_folder, progress_bar=None, start_from_scratch=False, threads=4, specific_file=None, is_llamacpp=False):
self.progress_bar = progress_bar
2023-06-20 22:25:58 -04:00
# Create the folder and writing the metadata
output_folder.mkdir(parents=True, exist_ok=True)
2023-06-20 22:25:58 -04:00
if not is_llamacpp:
metadata = f'url: https://huggingface.co/{model}\n' \
f'branch: {branch}\n' \
f'download date: {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}\n'
2023-06-20 22:25:58 -04:00
sha256_str = '\n'.join([f' {item[1]} {item[0]}' for item in sha256])
if sha256_str:
metadata += f'sha256sum:\n{sha256_str}'
metadata += '\n'
(output_folder / 'huggingface-metadata.txt').write_text(metadata)
if specific_file:
print(f"Downloading {specific_file} to {output_folder}")
else:
print(f"Downloading the model to {output_folder}")
self.start_download_threads(links, output_folder, start_from_scratch=start_from_scratch, threads=threads)
def check_model_files(self, model, branch, links, sha256, output_folder):
# Validate the checksums
validated = True
2023-04-09 15:59:59 -04:00
for i in range(len(sha256)):
fpath = (output_folder / sha256[i][0])
if not fpath.exists():
print(f"The following file is missing: {fpath}")
2023-03-31 00:31:47 -04:00
validated = False
continue
with open(output_folder / sha256[i][0], "rb") as f:
bytes = f.read()
file_hash = hashlib.sha256(bytes).hexdigest()
if file_hash != sha256[i][1]:
print(f'Checksum failed: {sha256[i][0]} {sha256[i][1]}')
validated = False
else:
print(f'Checksum validated: {sha256[i][0]} {sha256[i][1]}')
if validated:
print('[+] Validated checksums of all model files!')
else:
print('[-] Invalid checksums. Rerun download-model.py with the --clean flag.')
2023-04-09 15:59:59 -04:00
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('MODEL', type=str, default=None, nargs='?')
parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.')
parser.add_argument('--threads', type=int, default=4, help='Number of files to download simultaneously.')
parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).')
parser.add_argument('--specific-file', type=str, default=None, help='Name of the specific file to download (if not provided, downloads all).')
parser.add_argument('--output', type=str, default=None, help='Save the model files to this folder.')
parser.add_argument('--model-dir', type=str, default=None, help='Save the model files to a subfolder of this folder instead of the default one (text-generation-webui/models).')
parser.add_argument('--clean', action='store_true', help='Does not resume the previous download.')
parser.add_argument('--check', action='store_true', help='Validates the checksums of model files.')
parser.add_argument('--max-retries', type=int, default=5, help='Max retries count when get error in download time.')
args = parser.parse_args()
2023-04-09 15:59:59 -04:00
branch = args.branch
model = args.MODEL
specific_file = args.specific_file
2023-04-09 15:59:59 -04:00
if model is None:
print("Error: Please specify the model you'd like to download (e.g. 'python download-model.py facebook/opt-1.3b').")
sys.exit()
downloader = ModelDownloader(max_retries=args.max_retries)
# Clean up the model/branch names
2023-04-09 15:59:59 -04:00
try:
model, branch = downloader.sanitize_model_and_branch_names(model, branch)
2023-04-09 15:59:59 -04:00
except ValueError as err_branch:
print(f"Error: {err_branch}")
sys.exit()
# Get the download links from Hugging Face
links, sha256, is_lora, is_llamacpp = downloader.get_download_links_from_huggingface(model, branch, text_only=args.text_only, specific_file=specific_file)
2023-04-09 15:59:59 -04:00
# Get the output folder
if args.output:
output_folder = Path(args.output)
else:
output_folder = downloader.get_output_folder(model, branch, is_lora, is_llamacpp=is_llamacpp, model_dir=args.model_dir)
2023-04-09 15:59:59 -04:00
if args.check:
# Check previously downloaded files
downloader.check_model_files(model, branch, links, sha256, output_folder)
2023-04-09 15:59:59 -04:00
else:
# Download files
downloader.download_model_files(model, branch, links, sha256, output_folder, specific_file=specific_file, threads=args.threads, is_llamacpp=is_llamacpp)