text-generation-webui/modules/models.py

439 lines
16 KiB
Python
Raw Normal View History

2023-04-07 20:36:04 -04:00
import gc
import logging
2023-02-23 11:28:30 -05:00
import os
import pprint
import re
2023-02-23 11:28:30 -05:00
import time
2023-09-24 23:23:05 -04:00
import traceback
2023-02-23 11:28:30 -05:00
from pathlib import Path
import torch
import transformers
from accelerate import infer_auto_device_map, init_empty_weights
2024-04-11 17:42:20 -04:00
from accelerate.utils import (
is_ccl_available,
is_npu_available,
is_xpu_available
)
2023-06-25 00:44:36 -04:00
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
BitsAndBytesConfig,
GPTQConfig
2023-06-25 00:44:36 -04:00
)
2023-02-23 12:41:42 -05:00
import modules.shared as shared
from modules import RoPE, sampler_hijack
from modules.logging_colors import logger
2023-09-11 17:49:30 -04:00
from modules.models_settings import get_model_metadata
from modules.relative_imports import RelativeImport
2023-02-23 11:28:30 -05:00
transformers.logging.set_verbosity_error()
2023-04-07 20:36:04 -04:00
local_rank = None
2023-02-23 11:28:30 -05:00
if shared.args.deepspeed:
import deepspeed
2023-06-25 00:44:36 -04:00
from transformers.deepspeed import (
HfDeepSpeedConfig,
is_deepspeed_zero3_enabled
)
2023-02-23 12:41:42 -05:00
2023-02-23 11:28:30 -05:00
from modules.deepspeed_parameters import generate_ds_config
# Distributed setup
local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
world_size = int(os.getenv("WORLD_SIZE", "1"))
if is_xpu_available() and is_ccl_available():
torch.xpu.set_device(local_rank)
deepspeed.init_distributed(backend="ccl")
2024-04-11 17:42:20 -04:00
elif is_npu_available():
torch.npu.set_device(local_rank)
deepspeed.init_distributed(dist_backend="hccl")
else:
torch.cuda.set_device(local_rank)
deepspeed.init_distributed()
2023-02-23 11:28:30 -05:00
ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
2023-02-23 11:28:30 -05:00
sampler_hijack.hijack_samplers()
2023-03-13 13:00:38 -04:00
def load_model(model_name, loader=None):
2024-02-06 11:22:08 -05:00
logger.info(f"Loading \"{model_name}\"")
2023-02-23 11:28:30 -05:00
t0 = time.time()
shared.is_seq2seq = False
shared.model_name = model_name
load_func_map = {
'Transformers': huggingface_loader,
'AutoGPTQ': AutoGPTQ_loader,
'GPTQ-for-LLaMa': GPTQ_loader,
'llama.cpp': llamacpp_loader,
2023-07-16 01:21:13 -04:00
'llamacpp_HF': llamacpp_HF_loader,
'ExLlamav2': ExLlamav2_loader,
'ExLlamav2_HF': ExLlamav2_HF_loader,
2023-10-05 12:19:18 -04:00
'AutoAWQ': AutoAWQ_loader,
'QuIP#': QuipSharp_loader,
'HQQ': HQQ_loader,
}
metadata = get_model_metadata(model_name)
if loader is None:
if shared.args.loader is not None:
loader = shared.args.loader
else:
loader = metadata['loader']
if loader is None:
logger.error('The path to the model does not exist. Exiting.')
raise ValueError
2023-05-16 18:52:22 -04:00
shared.args.loader = loader
output = load_func_map[loader](model_name)
2023-05-16 18:52:22 -04:00
if type(output) is tuple:
model, tokenizer = output
else:
model = output
if model is None:
return None, None
else:
tokenizer = load_tokenizer(model_name, model)
2023-05-16 18:52:22 -04:00
shared.settings.update({k: v for k, v in metadata.items() if k in shared.settings})
if loader.lower().startswith('exllama'):
shared.settings['truncation_length'] = shared.args.max_seq_len
2024-04-04 19:23:58 -04:00
elif loader in ['llama.cpp', 'llamacpp_HF']:
shared.settings['truncation_length'] = shared.args.n_ctx
2024-02-06 09:31:27 -05:00
logger.info(f"LOADER: \"{loader}\"")
logger.info(f"TRUNCATION LENGTH: {shared.settings['truncation_length']}")
2024-02-06 09:31:27 -05:00
logger.info(f"INSTRUCTION TEMPLATE: \"{metadata['instruction_template']}\"")
2023-10-10 21:20:49 -04:00
logger.info(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
2023-05-16 18:52:22 -04:00
return model, tokenizer
def load_tokenizer(model_name, model):
tokenizer = None
path_to_model = Path(f"{shared.args.model_dir}/{model_name}/")
2024-04-04 19:10:47 -04:00
if path_to_model.exists():
if shared.args.no_use_fast:
logger.info('Loading the tokenizer with use_fast=False.')
2023-09-25 15:19:43 -04:00
tokenizer = AutoTokenizer.from_pretrained(
path_to_model,
trust_remote_code=shared.args.trust_remote_code,
use_fast=not shared.args.no_use_fast
2023-09-25 15:19:43 -04:00
)
2023-05-16 18:52:22 -04:00
return tokenizer
def huggingface_loader(model_name):
path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
2023-09-24 23:23:05 -04:00
params = {
'low_cpu_mem_usage': True,
'torch_dtype': torch.bfloat16 if shared.args.bf16 else torch.float16,
2023-09-24 23:23:05 -04:00
}
if shared.args.trust_remote_code:
params['trust_remote_code'] = True
if shared.args.use_flash_attention_2:
params['use_flash_attention_2'] = True
if shared.args.force_safetensors:
2024-04-05 21:43:43 -04:00
params['force_safetensors'] = True
config = AutoConfig.from_pretrained(path_to_model, trust_remote_code=shared.args.trust_remote_code)
if 'chatglm' in model_name.lower():
LoaderClass = AutoModel
else:
2023-09-24 23:23:05 -04:00
if config.to_dict().get('is_encoder_decoder', False):
LoaderClass = AutoModelForSeq2SeqLM
shared.is_seq2seq = True
else:
LoaderClass = AutoModelForCausalLM
2023-02-27 21:03:35 -05:00
# Load the model without any special settings
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.load_in_4bit, shared.args.auto_devices, shared.args.disk, shared.args.deepspeed, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.compress_pos_emb > 1, shared.args.alpha_value > 1, shared.args.disable_exllama, shared.args.disable_exllamav2]):
logger.info("TRANSFORMERS_PARAMS=")
pprint.PrettyPrinter(indent=4, sort_dicts=False).pprint(params)
print()
2023-09-24 23:23:05 -04:00
model = LoaderClass.from_pretrained(path_to_model, **params)
if not (hasattr(model, 'is_loaded_in_4bit') and model.is_loaded_in_4bit):
if torch.backends.mps.is_available():
device = torch.device('mps')
model = model.to(device)
elif is_xpu_available():
device = torch.device("xpu")
model = model.to(device)
2024-04-11 17:42:20 -04:00
elif is_npu_available():
device = torch.device("npu")
model = model.to(device)
else:
model = model.cuda()
2023-03-17 21:27:26 -04:00
2023-02-23 11:28:30 -05:00
# DeepSpeed ZeRO-3
elif shared.args.deepspeed:
model = LoaderClass.from_pretrained(path_to_model, torch_dtype=params['torch_dtype'], trust_remote_code=params['trust_remote_code'])
2023-02-23 11:28:30 -05:00
model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
model.module.eval() # Inference
2023-09-24 23:23:05 -04:00
logger.info(f'DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}')
2023-02-23 11:28:30 -05:00
2023-09-24 23:23:05 -04:00
# Load with quantization and/or offloading
2023-02-23 11:28:30 -05:00
else:
if not any((shared.args.cpu, torch.cuda.is_available(), is_xpu_available(), torch.backends.mps.is_available())):
logger.warning('torch.cuda.is_available() and is_xpu_available() returned False. This means that no GPU has been detected. Falling back to CPU mode.')
2023-02-23 11:28:30 -05:00
shared.args.cpu = True
if shared.args.cpu:
2023-09-24 23:23:05 -04:00
params['torch_dtype'] = torch.float32
2023-02-23 11:28:30 -05:00
else:
2023-09-24 23:23:05 -04:00
params['device_map'] = 'auto'
if x := get_max_memory_dict():
params['max_memory'] = x
2023-05-25 00:14:13 -04:00
if shared.args.load_in_4bit:
# See https://github.com/huggingface/transformers/pull/23479/files
# and https://huggingface.co/blog/4bit-transformers-bitsandbytes
quantization_config_params = {
'load_in_4bit': True,
'bnb_4bit_compute_dtype': eval("torch.{}".format(shared.args.compute_dtype)) if shared.args.compute_dtype in ["bfloat16", "float16", "float32"] else None,
'bnb_4bit_quant_type': shared.args.quant_type,
'bnb_4bit_use_double_quant': shared.args.use_double_quant,
}
params['quantization_config'] = BitsAndBytesConfig(**quantization_config_params)
elif shared.args.load_in_8bit:
if any((shared.args.auto_devices, shared.args.gpu_memory)):
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True)
else:
params['quantization_config'] = BitsAndBytesConfig(load_in_8bit=True)
2023-02-23 11:28:30 -05:00
2023-09-24 23:23:05 -04:00
if params['max_memory'] is not None:
with init_empty_weights():
model = LoaderClass.from_config(config, trust_remote_code=params['trust_remote_code'])
model.tie_weights()
params['device_map'] = infer_auto_device_map(
model,
dtype=torch.int8,
max_memory=params['max_memory'],
no_split_module_classes=model._no_split_modules
)
if shared.args.disk:
2023-09-24 23:23:05 -04:00
params['offload_folder'] = shared.args.disk_cache_dir
if shared.args.disable_exllama or shared.args.disable_exllamav2:
try:
gptq_config = GPTQConfig(
bits=config.quantization_config.get('bits', 4),
disable_exllama=shared.args.disable_exllama,
disable_exllamav2=shared.args.disable_exllamav2,
)
params['quantization_config'] = gptq_config
logger.info(f'Loading with disable_exllama={shared.args.disable_exllama} and disable_exllamav2={shared.args.disable_exllamav2}.')
except:
2023-09-24 23:23:05 -04:00
exc = traceback.format_exc()
logger.error('Failed to disable exllama. Does the config.json for this model contain the necessary quantization info?')
2023-09-24 23:23:05 -04:00
print(exc)
if shared.args.compress_pos_emb > 1:
params['rope_scaling'] = {'type': 'linear', 'factor': shared.args.compress_pos_emb}
elif shared.args.alpha_value > 1:
params['rope_scaling'] = {'type': 'dynamic', 'factor': RoPE.get_alpha_value(shared.args.alpha_value, shared.args.rope_freq_base)}
logger.info("TRANSFORMERS_PARAMS=")
pprint.PrettyPrinter(indent=4, sort_dicts=False).pprint(params)
2024-04-06 21:56:58 -04:00
print()
model = LoaderClass.from_pretrained(path_to_model, **params)
2023-02-23 11:28:30 -05:00
2023-05-16 18:52:22 -04:00
return model
2023-04-09 22:08:40 -04:00
2023-04-19 20:23:51 -04:00
2023-05-16 18:52:22 -04:00
def llamacpp_loader(model_name):
from modules.llamacpp_model import LlamaCppModel
path = Path(f'{shared.args.model_dir}/{model_name}')
if path.is_file():
model_file = path
2023-02-23 11:28:30 -05:00
else:
2023-09-11 10:30:56 -04:00
model_file = list(Path(f'{shared.args.model_dir}/{model_name}').glob('*.gguf'))[0]
2023-02-23 11:28:30 -05:00
2024-02-06 11:22:08 -05:00
logger.info(f"llama.cpp weights detected: \"{model_file}\"")
2023-05-16 18:52:22 -04:00
model, tokenizer = LlamaCppModel.from_pretrained(model_file)
2023-02-23 11:28:30 -05:00
return model, tokenizer
2023-07-16 01:21:13 -04:00
def llamacpp_HF_loader(model_name):
from modules.llamacpp_hf import LlamacppHF
path = Path(f'{shared.args.model_dir}/{model_name}')
# Check if a HF tokenizer is available for the model
if all((path / file).exists() for file in ['tokenizer_config.json']):
logger.info(f'Using tokenizer from: \"{path}\"')
2023-07-16 01:21:13 -04:00
else:
logger.error("Could not load the model because a tokenizer in Transformers format was not found.")
2023-07-16 01:21:13 -04:00
return None, None
model = LlamacppHF.from_pretrained(model_name)
return model
2023-07-16 01:21:13 -04:00
2023-10-05 12:19:18 -04:00
def AutoAWQ_loader(model_name):
2023-10-10 22:03:09 -04:00
from awq import AutoAWQForCausalLM
2023-10-05 12:19:18 -04:00
2023-10-10 22:03:09 -04:00
model_dir = Path(f'{shared.args.model_dir}/{model_name}')
2023-10-05 12:19:18 -04:00
2023-10-10 22:03:09 -04:00
model = AutoAWQForCausalLM.from_quantized(
2024-01-09 19:27:50 -05:00
quant_path=model_dir,
max_new_tokens=shared.args.max_seq_len,
trust_remote_code=shared.args.trust_remote_code,
fuse_layers=not shared.args.no_inject_fused_attention,
max_memory=get_max_memory_dict(),
batch_size=1,
safetensors=any(model_dir.glob('*.safetensors')),
)
2023-10-05 12:19:18 -04:00
2023-10-10 22:03:09 -04:00
return model
2023-10-05 12:19:18 -04:00
def QuipSharp_loader(model_name):
try:
with RelativeImport("repositories/quip-sharp"):
from lib.utils.unsafe_import import model_from_hf_path
except:
logger.error(
"\nQuIP# has not been found. It must be installed manually for now.\n"
"For instructions on how to do that, please consult:\n"
"https://github.com/oobabooga/text-generation-webui/pull/4803\n"
)
return None, None
# This fixes duplicate logging messages after the import above.
handlers = logging.getLogger().handlers
if len(handlers) > 1:
logging.getLogger().removeHandler(handlers[1])
model_dir = Path(f'{shared.args.model_dir}/{model_name}')
if not all((model_dir / file).exists() for file in ['tokenizer_config.json', 'special_tokens_map.json', 'tokenizer.model']):
logger.error(f"Could not load the model because the tokenizer files could not be found in the model folder. Please download the following files from the original (unquantized) model into {model_dir}: special_tokens_map.json, tokenizer.json, tokenizer.model, tokenizer_config.json.")
return None, None
model, model_str = model_from_hf_path(
model_dir,
use_cuda_graph=False,
use_flash_attn=not shared.args.no_flash_attn
)
return model
2023-05-16 18:52:22 -04:00
def GPTQ_loader(model_name):
# Monkey patch
if shared.args.monkey_patch:
2023-05-29 21:40:54 -04:00
logger.warning("Applying the monkey patch for using LoRAs with GPTQ models. It may cause undefined behavior outside its intended scope.")
2023-05-16 18:52:22 -04:00
from modules.monkey_patch_gptq_lora import load_model_llama
model, _ = load_model_llama(model_name)
# No monkey patch
else:
2023-05-17 10:23:13 -04:00
import modules.GPTQ_loader
2023-05-16 18:52:22 -04:00
2023-05-17 10:23:13 -04:00
model = modules.GPTQ_loader.load_quantized(model_name)
2023-05-16 18:52:22 -04:00
return model
2023-05-17 10:12:12 -04:00
def AutoGPTQ_loader(model_name):
2023-05-17 10:23:13 -04:00
import modules.AutoGPTQ_loader
2023-05-17 10:12:12 -04:00
2023-05-17 10:23:13 -04:00
return modules.AutoGPTQ_loader.load_quantized(model_name)
2023-05-17 10:12:12 -04:00
def ExLlamav2_loader(model_name):
from modules.exllamav2 import Exllamav2Model
model, tokenizer = Exllamav2Model.from_pretrained(model_name)
return model, tokenizer
def ExLlamav2_HF_loader(model_name):
from modules.exllamav2_hf import Exllamav2HF
return Exllamav2HF.from_pretrained(model_name)
def HQQ_loader(model_name):
from hqq.core.quantize import HQQBackend, HQQLinear
from hqq.engine.hf import HQQModelForCausalLM
2024-02-06 11:22:08 -05:00
logger.info(f"Loading HQQ model with backend: \"{shared.args.hqq_backend}\"")
model_dir = Path(f'{shared.args.model_dir}/{model_name}')
model = HQQModelForCausalLM.from_quantized(str(model_dir))
HQQLinear.set_backend(getattr(HQQBackend, shared.args.hqq_backend))
return model
2023-05-15 18:38:27 -04:00
def get_max_memory_dict():
max_memory = {}
max_cpu_memory = shared.args.cpu_memory.strip() if shared.args.cpu_memory is not None else '99GiB'
2023-05-15 18:38:27 -04:00
if shared.args.gpu_memory:
memory_map = list(map(lambda x: x.strip(), shared.args.gpu_memory))
for i in range(len(memory_map)):
max_memory[i] = f'{memory_map[i]}GiB' if not re.match('.*ib$', memory_map[i].lower()) else memory_map[i]
max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory
2023-05-15 18:38:27 -04:00
# If --auto-devices is provided standalone, try to get a reasonable value
# for the maximum memory of device :0
elif shared.args.auto_devices:
if is_xpu_available():
total_mem = (torch.xpu.get_device_properties(0).total_memory / (1024 * 1024))
else:
total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024 * 1024))
2023-05-15 18:38:27 -04:00
suggestion = round((total_mem - 1000) / 1000) * 1000
if total_mem - suggestion < 800:
suggestion -= 1000
suggestion = int(round(suggestion / 1000))
logger.warning(f"Auto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors. You can manually set other values.")
max_memory[0] = f'{suggestion}GiB'
max_memory['cpu'] = f'{max_cpu_memory}GiB' if not re.match('.*ib$', max_cpu_memory.lower()) else max_cpu_memory
2023-05-15 18:38:27 -04:00
2023-05-17 10:12:12 -04:00
return max_memory if len(max_memory) > 0 else None
2023-05-15 18:38:27 -04:00
2023-04-07 20:36:04 -04:00
def clear_torch_cache():
gc.collect()
if not shared.args.cpu:
if is_xpu_available():
torch.xpu.empty_cache()
else:
torch.cuda.empty_cache()
2023-04-07 20:36:04 -04:00
def unload_model():
shared.model = shared.tokenizer = None
shared.model_name = 'None'
shared.lora_names = []
shared.model_dirty_from_training = False
2023-04-07 20:36:04 -04:00
clear_torch_cache()
def reload_model():
2023-04-07 20:37:41 -04:00
unload_model()
2023-04-07 20:36:04 -04:00
shared.model, shared.tokenizer = load_model(shared.model_name)