2023-04-05 13:05:50 -04:00
import os
2023-04-21 16:18:34 -04:00
import requests
2023-04-21 16:20:59 -04:00
import warnings
2023-04-21 16:18:34 -04:00
2023-04-05 13:05:50 -04:00
os . environ [ ' GRADIO_ANALYTICS_ENABLED ' ] = ' False '
2023-04-13 11:04:39 -04:00
os . environ [ ' BITSANDBYTES_NOWELCOME ' ] = ' 1 '
2023-04-13 11:09:42 -04:00
warnings . filterwarnings ( ' ignore ' , category = UserWarning , message = ' TypedStorage is deprecated ' )
2023-04-18 02:56:20 -04:00
# This is a hack to prevent Gradio from phoning home when it gets imported
def my_get ( url , * * kwargs ) :
print ( ' Gradio HTTP request redirected to localhost :) ' )
kwargs . setdefault ( ' allow_redirects ' , True )
return requests . api . request ( ' get ' , ' http://127.0.0.1/ ' , * * kwargs )
original_get = requests . get
requests . get = my_get
import gradio as gr
requests . get = original_get
2023-04-05 13:05:50 -04:00
2023-04-19 00:43:10 -04:00
# This fixes LaTeX rendering on some systems
import matplotlib
matplotlib . use ( ' Agg ' )
2023-04-10 10:36:39 -04:00
import importlib
2023-01-28 17:16:37 -05:00
import io
2023-02-10 13:40:03 -05:00
import json
2023-04-12 16:09:56 -04:00
import math
2023-04-10 10:36:39 -04:00
import os
2023-02-10 13:40:03 -05:00
import re
2023-04-12 20:24:26 -04:00
import sys
2023-02-10 13:40:03 -05:00
import time
2023-04-10 10:36:39 -04:00
import traceback
2023-02-13 13:25:16 -05:00
import zipfile
2023-03-27 11:16:37 -04:00
from datetime import datetime
2023-04-24 02:05:47 -04:00
from functools import partial
2023-01-07 14:33:43 -05:00
from pathlib import Path
2023-04-10 10:36:39 -04:00
2023-04-12 16:09:56 -04:00
import psutil
import torch
2023-04-15 11:54:02 -04:00
import yaml
2023-04-04 21:28:49 -04:00
from PIL import Image
2023-02-10 13:40:03 -05:00
2023-02-23 10:05:25 -05:00
import modules . extensions as extensions_module
2023-04-23 14:52:43 -04:00
from modules import chat , shared , training , ui
2023-04-05 10:49:59 -04:00
from modules . html_generator import chat_html_wrapper
2023-03-17 10:42:25 -04:00
from modules . LoRA import add_lora_to_model
2023-04-07 20:36:04 -04:00
from modules . models import load_model , load_soft_prompt , unload_model
2023-04-21 16:18:34 -04:00
from modules . text_generation import ( encode , generate_reply ,
stop_everything_event )
2022-12-21 11:27:31 -05:00
2023-04-12 21:56:32 -04:00
2023-02-23 12:31:28 -05:00
def get_available_models ( ) :
2023-03-02 10:03:57 -05:00
if shared . args . flexgen :
2023-04-14 10:07:28 -04:00
return sorted ( [ re . sub ( ' -np$ ' , ' ' , item . name ) for item in list ( Path ( f ' { shared . args . model_dir } / ' ) . glob ( ' * ' ) ) if item . name . endswith ( ' -np ' ) ] , key = str . lower )
2023-03-02 10:03:57 -05:00
else :
2023-04-16 11:47:30 -04:00
return sorted ( [ re . sub ( ' .pth$ ' , ' ' , item . name ) for item in list ( Path ( f ' { shared . args . model_dir } / ' ) . glob ( ' * ' ) ) if not item . name . endswith ( ( ' .txt ' , ' -np ' , ' .pt ' , ' .json ' , ' .yaml ' ) ) ] , key = str . lower )
2023-02-23 12:31:28 -05:00
2023-04-06 23:15:45 -04:00
2023-02-23 12:31:28 -05:00
def get_available_presets ( ) :
2023-04-02 23:54:56 -04:00
return sorted ( set ( ( k . stem for k in Path ( ' presets ' ) . glob ( ' *.txt ' ) ) ) , key = str . lower )
2023-02-23 12:31:28 -05:00
2023-04-06 23:15:45 -04:00
2023-03-27 11:16:37 -04:00
def get_available_prompts ( ) :
prompts = [ ]
2023-04-02 23:54:56 -04:00
prompts + = sorted ( set ( ( k . stem for k in Path ( ' prompts ' ) . glob ( ' [0-9]*.txt ' ) ) ) , key = str . lower , reverse = True )
prompts + = sorted ( set ( ( k . stem for k in Path ( ' prompts ' ) . glob ( ' *.txt ' ) ) ) , key = str . lower )
2023-03-27 11:16:37 -04:00
prompts + = [ ' None ' ]
return prompts
2023-04-06 23:15:45 -04:00
2023-02-23 12:31:28 -05:00
def get_available_characters ( ) :
2023-04-02 19:34:25 -04:00
paths = ( x for x in Path ( ' characters ' ) . iterdir ( ) if x . suffix in ( ' .json ' , ' .yaml ' , ' .yml ' ) )
2023-04-05 10:49:59 -04:00
return [ ' None ' ] + sorted ( set ( ( k . stem for k in paths if k . stem != " instruction-following " ) ) , key = str . lower )
2023-04-06 23:15:45 -04:00
2023-04-05 10:49:59 -04:00
def get_available_instruction_templates ( ) :
2023-04-06 00:24:22 -04:00
path = " characters/instruction-following "
paths = [ ]
if os . path . exists ( path ) :
paths = ( x for x in Path ( path ) . iterdir ( ) if x . suffix in ( ' .json ' , ' .yaml ' , ' .yml ' ) )
2023-04-02 19:34:25 -04:00
return [ ' None ' ] + sorted ( set ( ( k . stem for k in paths ) ) , key = str . lower )
2023-02-23 12:31:28 -05:00
2023-04-06 23:15:45 -04:00
2023-02-23 12:31:28 -05:00
def get_available_extensions ( ) :
2023-04-06 23:15:45 -04:00
return sorted ( set ( map ( lambda x : x . parts [ 1 ] , Path ( ' extensions ' ) . glob ( ' */script.py ' ) ) ) , key = str . lower )
2023-02-23 12:31:28 -05:00
def get_available_softprompts ( ) :
2023-04-02 23:54:56 -04:00
return [ ' None ' ] + sorted ( set ( ( k . stem for k in Path ( ' softprompts ' ) . glob ( ' *.zip ' ) ) ) , key = str . lower )
2023-02-23 12:31:28 -05:00
2023-04-06 23:15:45 -04:00
2023-03-16 20:31:39 -04:00
def get_available_loras ( ) :
2023-04-17 12:52:23 -04:00
return sorted ( [ item . name for item in list ( Path ( shared . args . lora_dir ) . glob ( ' * ' ) ) if not item . name . endswith ( ( ' .txt ' , ' -np ' , ' .pt ' , ' .json ' ) ) ] , key = str . lower )
2023-03-16 20:31:39 -04:00
2023-04-06 23:15:45 -04:00
2023-02-07 20:08:21 -05:00
def load_model_wrapper ( selected_model ) :
2023-04-12 16:09:56 -04:00
try :
yield f " Loading { selected_model } ... "
2023-02-23 10:05:25 -05:00
shared . model_name = selected_model
2023-03-26 22:47:29 -04:00
unload_model ( )
if selected_model != ' ' :
shared . model , shared . tokenizer = load_model ( shared . model_name )
2023-02-07 20:08:21 -05:00
2023-04-12 16:09:56 -04:00
yield f " Successfully loaded { selected_model } "
except :
yield traceback . format_exc ( )
2023-02-12 07:36:27 -05:00
2023-04-06 23:15:45 -04:00
2023-04-14 13:52:06 -04:00
def load_lora_wrapper ( selected_loras ) :
yield ( " Applying the following LoRAs to {} : \n \n {} " . format ( shared . model_name , ' \n ' . join ( selected_loras ) ) )
add_lora_to_model ( selected_loras )
yield ( " Successfuly applied the LoRAs " )
2023-03-16 20:31:39 -04:00
2023-04-06 23:15:45 -04:00
2023-04-06 00:22:15 -04:00
def load_preset_values ( preset_menu , state , return_dict = False ) :
2023-02-07 22:19:20 -05:00
generate_params = {
2023-02-07 20:08:21 -05:00
' do_sample ' : True ,
' temperature ' : 1 ,
' top_p ' : 1 ,
' typical_p ' : 1 ,
' repetition_penalty ' : 1 ,
2023-03-15 10:04:30 -04:00
' encoder_repetition_penalty ' : 1 ,
2023-02-07 20:08:21 -05:00
' top_k ' : 50 ,
2023-02-07 21:11:04 -05:00
' num_beams ' : 1 ,
2023-02-11 12:48:12 -05:00
' penalty_alpha ' : 0 ,
2023-02-07 21:11:04 -05:00
' min_length ' : 0 ,
' length_penalty ' : 1 ,
' no_repeat_ngram_size ' : 0 ,
' early_stopping ' : False ,
2023-02-07 20:08:21 -05:00
}
with open ( Path ( f ' presets/ { preset_menu } .txt ' ) , ' r ' ) as infile :
preset = infile . read ( )
2023-02-11 12:54:29 -05:00
for i in preset . splitlines ( ) :
i = i . rstrip ( ' , ' ) . strip ( ) . split ( ' = ' )
2023-02-07 20:08:21 -05:00
if len ( i ) == 2 and i [ 0 ] . strip ( ) != ' tokens ' :
2023-02-07 22:19:20 -05:00
generate_params [ i [ 0 ] . strip ( ) ] = eval ( i [ 1 ] . strip ( ) )
generate_params [ ' temperature ' ] = min ( 1.99 , generate_params [ ' temperature ' ] )
2023-02-07 20:08:21 -05:00
if return_dict :
2023-02-07 22:19:20 -05:00
return generate_params
2023-02-07 20:08:21 -05:00
else :
2023-04-06 00:22:15 -04:00
state . update ( generate_params )
return state , * [ generate_params [ k ] for k in [ ' do_sample ' , ' temperature ' , ' top_p ' , ' typical_p ' , ' repetition_penalty ' , ' encoder_repetition_penalty ' , ' top_k ' , ' min_length ' , ' no_repeat_ngram_size ' , ' num_beams ' , ' penalty_alpha ' , ' length_penalty ' , ' early_stopping ' ] ]
2023-02-07 20:08:21 -05:00
2023-04-06 23:15:45 -04:00
2023-02-23 11:28:30 -05:00
def upload_soft_prompt ( file ) :
with zipfile . ZipFile ( io . BytesIO ( file ) ) as zf :
zf . extract ( ' meta.json ' )
j = json . loads ( open ( ' meta.json ' , ' r ' ) . read ( ) )
name = j [ ' name ' ]
Path ( ' meta.json ' ) . unlink ( )
with open ( Path ( f ' softprompts/ { name } .zip ' ) , ' wb ' ) as f :
f . write ( file )
return name
2023-04-06 23:15:45 -04:00
2023-03-27 11:16:37 -04:00
def save_prompt ( text ) :
2023-04-05 13:08:54 -04:00
fname = f " { datetime . now ( ) . strftime ( ' % Y- % m- %d - % H % M % S ' ) } .txt "
2023-03-27 11:16:37 -04:00
with open ( Path ( f ' prompts/ { fname } ' ) , ' w ' , encoding = ' utf-8 ' ) as f :
f . write ( text )
2023-03-27 11:43:37 -04:00
return f " Saved to prompts/ { fname } "
2023-03-27 11:16:37 -04:00
2023-04-06 23:15:45 -04:00
2023-03-27 11:16:37 -04:00
def load_prompt ( fname ) :
if fname in [ ' None ' , ' ' ] :
return ' '
else :
with open ( Path ( f ' prompts/ { fname } .txt ' ) , ' r ' , encoding = ' utf-8 ' ) as f :
2023-03-29 21:40:04 -04:00
text = f . read ( )
if text [ - 1 ] == ' \n ' :
text = text [ : - 1 ]
return text
2023-04-05 10:49:59 -04:00
2023-04-06 23:15:45 -04:00
2023-04-21 16:18:34 -04:00
def count_tokens ( text ) :
tokens = len ( encode ( text ) [ 0 ] )
return f ' { tokens } tokens in the input. '
2023-04-09 07:11:43 -04:00
def download_model_wrapper ( repo_id ) :
2023-04-10 10:36:39 -04:00
try :
downloader = importlib . import_module ( " download-model " )
model = repo_id
branch = " main "
check = False
2023-04-11 10:46:30 -04:00
yield ( " Cleaning up the model/branch names " )
2023-04-10 10:36:39 -04:00
model , branch = downloader . sanitize_model_and_branch_names ( model , branch )
2023-04-11 10:46:30 -04:00
yield ( " Getting the download links from Hugging Face " )
2023-04-10 10:36:39 -04:00
links , sha256 , is_lora = downloader . get_download_links_from_huggingface ( model , branch , text_only = False )
2023-04-11 10:46:30 -04:00
yield ( " Getting the output folder " )
2023-04-10 10:36:39 -04:00
output_folder = downloader . get_output_folder ( model , branch , is_lora )
if check :
2023-04-11 10:46:30 -04:00
yield ( " Checking previously downloaded files " )
2023-04-10 10:36:39 -04:00
downloader . check_model_files ( model , branch , links , sha256 , output_folder )
else :
2023-04-11 10:46:30 -04:00
yield ( f " Downloading files to { output_folder } " )
2023-04-10 10:36:39 -04:00
downloader . download_model_files ( model , branch , links , sha256 , output_folder , threads = 1 )
2023-04-11 10:46:30 -04:00
yield ( " Done! " )
2023-04-10 10:36:39 -04:00
except :
yield traceback . format_exc ( )
2023-04-09 07:11:43 -04:00
2023-04-14 10:07:28 -04:00
# Update the command-line arguments based on the interface values
2023-04-14 14:24:03 -04:00
def update_model_parameters ( state , initial = False ) :
2023-04-14 10:07:28 -04:00
elements = ui . list_model_elements ( ) # the names of the parameters
2023-04-12 17:21:14 -04:00
gpu_memories = [ ]
2023-04-14 14:35:06 -04:00
2023-04-12 16:09:56 -04:00
for i , element in enumerate ( elements ) :
2023-04-14 10:07:28 -04:00
if element not in state :
continue
value = state [ element ]
2023-04-12 17:21:14 -04:00
if element . startswith ( ' gpu_memory ' ) :
2023-04-14 10:07:28 -04:00
gpu_memories . append ( value )
2023-04-12 17:21:14 -04:00
continue
2023-04-14 14:35:06 -04:00
if initial and vars ( shared . args ) [ element ] != vars ( shared . args_defaults ) [ element ] :
2023-04-14 14:24:03 -04:00
continue
# Setting null defaults
if element in [ ' wbits ' , ' groupsize ' , ' model_type ' ] and value == ' None ' :
2023-04-14 14:35:06 -04:00
value = vars ( shared . args_defaults ) [ element ]
2023-04-14 14:24:03 -04:00
elif element in [ ' cpu_memory ' ] and value == 0 :
2023-04-14 14:35:06 -04:00
value = vars ( shared . args_defaults ) [ element ]
2023-04-14 14:24:03 -04:00
# Making some simple conversions
2023-04-12 16:09:56 -04:00
if element in [ ' wbits ' , ' groupsize ' , ' pre_layer ' ] :
2023-04-14 10:07:28 -04:00
value = int ( value )
elif element == ' cpu_memory ' and value is not None :
value = f " { value } MiB "
2023-04-12 16:09:56 -04:00
2023-04-16 00:36:50 -04:00
setattr ( shared . args , element , value )
2023-04-12 17:21:14 -04:00
found_positive = False
for i in gpu_memories :
if i > 0 :
found_positive = True
break
2023-04-14 14:24:03 -04:00
2023-04-15 10:58:55 -04:00
if not ( initial and vars ( shared . args ) [ ' gpu_memory ' ] != vars ( shared . args_defaults ) [ ' gpu_memory ' ] ) :
if found_positive :
shared . args . gpu_memory = [ f " { i } MiB " for i in gpu_memories ]
else :
shared . args . gpu_memory = None
2023-04-12 16:09:56 -04:00
2023-04-14 10:07:28 -04:00
def get_model_specific_settings ( model ) :
settings = shared . model_config
model_settings = { }
for pat in settings :
2023-04-15 11:54:02 -04:00
if re . match ( pat . lower ( ) , model . lower ( ) ) :
2023-04-14 10:07:28 -04:00
for k in settings [ pat ] :
model_settings [ k ] = settings [ pat ] [ k ]
return model_settings
def load_model_specific_settings ( model , state , return_dict = False ) :
model_settings = get_model_specific_settings ( model )
for k in model_settings :
if k in state :
state [ k ] = model_settings [ k ]
return state
2023-04-15 11:54:02 -04:00
def save_model_settings ( model , state ) :
if model == ' None ' :
yield ( " Not saving the settings because no model is loaded. " )
return
with Path ( f ' { shared . args . model_dir } /config-user.yaml ' ) as p :
if p . exists ( ) :
user_config = yaml . safe_load ( open ( p , ' r ' ) . read ( ) )
else :
user_config = { }
if model not in user_config :
user_config [ model ] = { }
for k in ui . list_model_elements ( ) :
user_config [ model ] [ k ] = state [ k ]
with open ( p , ' w ' ) as f :
f . write ( yaml . dump ( user_config ) )
yield ( f " Settings for { model } saved to { p } " )
2023-04-12 17:26:15 -04:00
def create_model_menus ( ) :
2023-04-12 16:09:56 -04:00
# Finding the default values for the GPU and CPU memories
2023-04-12 17:21:14 -04:00
total_mem = [ ]
for i in range ( torch . cuda . device_count ( ) ) :
2023-04-13 10:44:10 -04:00
total_mem . append ( math . floor ( torch . cuda . get_device_properties ( i ) . total_memory / ( 1024 * 1024 ) ) )
2023-04-12 17:21:14 -04:00
default_gpu_mem = [ ]
2023-04-12 16:09:56 -04:00
if shared . args . gpu_memory is not None and len ( shared . args . gpu_memory ) > 0 :
2023-04-12 17:21:14 -04:00
for i in shared . args . gpu_memory :
if ' mib ' in i . lower ( ) :
default_gpu_mem . append ( int ( re . sub ( ' [a-zA-Z ] ' , ' ' , i ) ) )
else :
2023-04-13 10:44:10 -04:00
default_gpu_mem . append ( int ( re . sub ( ' [a-zA-Z ] ' , ' ' , i ) ) * 1000 )
2023-04-12 17:21:14 -04:00
while len ( default_gpu_mem ) < len ( total_mem ) :
default_gpu_mem . append ( 0 )
2023-04-13 10:44:10 -04:00
total_cpu_mem = math . floor ( psutil . virtual_memory ( ) . total / ( 1024 * 1024 ) )
2023-04-12 16:09:56 -04:00
if shared . args . cpu_memory is not None :
default_cpu_mem = re . sub ( ' [a-zA-Z ] ' , ' ' , shared . args . cpu_memory )
else :
default_cpu_mem = 0
2023-04-06 00:54:05 -04:00
with gr . Row ( ) :
with gr . Column ( ) :
with gr . Row ( ) :
2023-04-12 16:09:56 -04:00
with gr . Column ( ) :
with gr . Row ( ) :
2023-04-14 10:07:28 -04:00
shared . gradio [ ' model_menu ' ] = gr . Dropdown ( choices = get_available_models ( ) , value = shared . model_name , label = ' Model ' )
2023-04-12 16:09:56 -04:00
ui . create_refresh_button ( shared . gradio [ ' model_menu ' ] , lambda : None , lambda : { ' choices ' : get_available_models ( ) } , ' refresh-button ' )
with gr . Column ( ) :
with gr . Row ( ) :
2023-04-14 13:52:06 -04:00
shared . gradio [ ' lora_menu ' ] = gr . Dropdown ( multiselect = True , choices = get_available_loras ( ) , value = shared . lora_names , label = ' LoRA(s) ' )
ui . create_refresh_button ( shared . gradio [ ' lora_menu ' ] , lambda : None , lambda : { ' choices ' : get_available_loras ( ) , ' value ' : shared . lora_names } , ' refresh-button ' )
2023-04-12 16:09:56 -04:00
2023-04-06 00:54:05 -04:00
with gr . Column ( ) :
2023-04-15 11:54:02 -04:00
with gr . Row ( ) :
shared . gradio [ ' lora_menu_apply ' ] = gr . Button ( value = ' Apply the selected LoRAs ' )
2023-04-14 13:52:06 -04:00
with gr . Row ( ) :
unload = gr . Button ( " Unload the model " )
reload = gr . Button ( " Reload the model " )
2023-04-18 22:36:23 -04:00
save_settings = gr . Button ( " Save settings for this model " )
2023-04-12 16:09:56 -04:00
2023-04-09 07:11:43 -04:00
with gr . Row ( ) :
2023-04-10 10:36:39 -04:00
with gr . Column ( ) :
2023-04-12 16:09:56 -04:00
with gr . Box ( ) :
2023-04-12 17:39:21 -04:00
gr . Markdown ( ' Transformers parameters ' )
2023-04-12 16:09:56 -04:00
with gr . Row ( ) :
with gr . Column ( ) :
2023-04-12 17:21:14 -04:00
for i in range ( len ( total_mem ) ) :
2023-04-14 10:07:28 -04:00
shared . gradio [ f ' gpu_memory_ { i } ' ] = gr . Slider ( label = f " gpu-memory in MiB for device : { i } " , maximum = total_mem [ i ] , value = default_gpu_mem [ i ] )
shared . gradio [ ' cpu_memory ' ] = gr . Slider ( label = " cpu-memory in MiB " , maximum = total_cpu_mem , value = default_cpu_mem )
2023-04-12 16:09:56 -04:00
with gr . Column ( ) :
2023-04-14 10:07:28 -04:00
shared . gradio [ ' auto_devices ' ] = gr . Checkbox ( label = " auto-devices " , value = shared . args . auto_devices )
shared . gradio [ ' disk ' ] = gr . Checkbox ( label = " disk " , value = shared . args . disk )
shared . gradio [ ' cpu ' ] = gr . Checkbox ( label = " cpu " , value = shared . args . cpu )
shared . gradio [ ' bf16 ' ] = gr . Checkbox ( label = " bf16 " , value = shared . args . bf16 )
shared . gradio [ ' load_in_8bit ' ] = gr . Checkbox ( label = " load-in-8bit " , value = shared . args . load_in_8bit )
2023-04-12 16:09:56 -04:00
2023-04-10 10:36:39 -04:00
with gr . Column ( ) :
2023-04-12 16:09:56 -04:00
with gr . Box ( ) :
2023-04-12 17:39:21 -04:00
gr . Markdown ( ' GPTQ parameters ' )
2023-04-12 16:09:56 -04:00
with gr . Row ( ) :
with gr . Column ( ) :
2023-04-14 10:07:28 -04:00
shared . gradio [ ' wbits ' ] = gr . Dropdown ( label = " wbits " , choices = [ " None " , 1 , 2 , 3 , 4 , 8 ] , value = shared . args . wbits if shared . args . wbits > 0 else " None " )
shared . gradio [ ' groupsize ' ] = gr . Dropdown ( label = " groupsize " , choices = [ " None " , 32 , 64 , 128 ] , value = shared . args . groupsize if shared . args . groupsize > 0 else " None " )
2023-04-12 16:09:56 -04:00
with gr . Column ( ) :
2023-04-14 10:07:28 -04:00
shared . gradio [ ' model_type ' ] = gr . Dropdown ( label = " model_type " , choices = [ " None " , " llama " , " opt " , " gptj " ] , value = shared . args . model_type or " None " )
shared . gradio [ ' pre_layer ' ] = gr . Slider ( label = " pre_layer " , minimum = 0 , maximum = 100 , value = shared . args . pre_layer )
2023-04-12 16:09:56 -04:00
with gr . Row ( ) :
with gr . Column ( ) :
shared . gradio [ ' custom_model_menu ' ] = gr . Textbox ( label = " Download custom model or LoRA " , info = " Enter Hugging Face username/model path, e.g: facebook/galactica-125m " )
2023-04-14 18:38:30 -04:00
shared . gradio [ ' download_model_button ' ] = gr . Button ( " Download " )
2023-04-12 16:09:56 -04:00
with gr . Column ( ) :
shared . gradio [ ' model_status ' ] = gr . Markdown ( ' No model is loaded ' if shared . model_name == ' None ' else ' Ready ' )
2023-04-14 10:07:28 -04:00
# In this event handler, the interface state is read and updated
# with the model defaults (if any), and then the model is loaded
2023-04-12 16:09:56 -04:00
shared . gradio [ ' model_menu ' ] . change (
2023-04-14 10:07:28 -04:00
ui . gather_interface_values , [ shared . gradio [ k ] for k in shared . input_elements ] , shared . gradio [ ' interface_state ' ] ) . then (
load_model_specific_settings , [ shared . gradio [ k ] for k in [ ' model_menu ' , ' interface_state ' ] ] , shared . gradio [ ' interface_state ' ] ) . then (
ui . apply_interface_values , shared . gradio [ ' interface_state ' ] , [ shared . gradio [ k ] for k in ui . list_interface_input_elements ( chat = shared . is_chat ( ) ) ] , show_progress = False ) . then (
update_model_parameters , shared . gradio [ ' interface_state ' ] , None ) . then (
2023-04-12 16:09:56 -04:00
load_model_wrapper , shared . gradio [ ' model_menu ' ] , shared . gradio [ ' model_status ' ] , show_progress = True )
unload . click (
unload_model , None , None ) . then (
lambda : " Model unloaded " , None , shared . gradio [ ' model_status ' ] )
reload . click (
unload_model , None , None ) . then (
2023-04-14 10:07:28 -04:00
ui . gather_interface_values , [ shared . gradio [ k ] for k in shared . input_elements ] , shared . gradio [ ' interface_state ' ] ) . then (
update_model_parameters , shared . gradio [ ' interface_state ' ] , None ) . then (
2023-04-15 11:54:02 -04:00
load_model_wrapper , shared . gradio [ ' model_menu ' ] , shared . gradio [ ' model_status ' ] , show_progress = False )
save_settings . click (
ui . gather_interface_values , [ shared . gradio [ k ] for k in shared . input_elements ] , shared . gradio [ ' interface_state ' ] ) . then (
save_model_settings , [ shared . gradio [ k ] for k in [ ' model_menu ' , ' interface_state ' ] ] , shared . gradio [ ' model_status ' ] , show_progress = False )
2023-04-06 00:54:05 -04:00
2023-04-14 13:52:06 -04:00
shared . gradio [ ' lora_menu_apply ' ] . click ( load_lora_wrapper , shared . gradio [ ' lora_menu ' ] , shared . gradio [ ' model_status ' ] , show_progress = False )
2023-04-14 18:38:30 -04:00
shared . gradio [ ' download_model_button ' ] . click ( download_model_wrapper , shared . gradio [ ' custom_model_menu ' ] , shared . gradio [ ' model_status ' ] , show_progress = False )
2023-04-06 00:54:05 -04:00
2023-04-06 23:15:45 -04:00
2023-03-15 11:01:32 -04:00
def create_settings_menus ( default_preset ) :
2023-04-11 11:30:06 -04:00
2023-04-06 00:22:15 -04:00
generate_params = load_preset_values ( default_preset if not shared . args . flexgen else ' Naive ' , { } , return_dict = True )
2023-03-15 11:01:32 -04:00
2023-03-27 11:16:37 -04:00
with gr . Row ( ) :
with gr . Column ( ) :
2023-04-06 00:54:05 -04:00
with gr . Row ( ) :
2023-04-14 10:07:28 -04:00
shared . gradio [ ' preset_menu ' ] = gr . Dropdown ( choices = get_available_presets ( ) , value = default_preset if not shared . args . flexgen else ' Naive ' , label = ' Generation parameters preset ' )
2023-04-06 23:15:45 -04:00
ui . create_refresh_button ( shared . gradio [ ' preset_menu ' ] , lambda : None , lambda : { ' choices ' : get_available_presets ( ) } , ' refresh-button ' )
2023-03-27 11:16:37 -04:00
with gr . Column ( ) :
2023-03-31 11:22:07 -04:00
shared . gradio [ ' seed ' ] = gr . Number ( value = shared . settings [ ' seed ' ] , label = ' Seed (-1 for random) ' )
2023-03-27 11:16:37 -04:00
2023-03-15 12:24:54 -04:00
with gr . Row ( ) :
with gr . Column ( ) :
with gr . Box ( ) :
2023-04-10 16:19:12 -04:00
gr . Markdown ( ' Custom generation parameters ([click here to view technical documentation](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig)) ' )
2023-03-15 12:24:54 -04:00
with gr . Row ( ) :
with gr . Column ( ) :
2023-04-10 16:19:12 -04:00
shared . gradio [ ' temperature ' ] = gr . Slider ( 0.01 , 1.99 , value = generate_params [ ' temperature ' ] , step = 0.01 , label = ' temperature ' , info = ' Primary factor to control randomness of outputs. 0 = deterministic (only the most likely token is used). Higher value = more randomness. ' )
shared . gradio [ ' top_p ' ] = gr . Slider ( 0.0 , 1.0 , value = generate_params [ ' top_p ' ] , step = 0.01 , label = ' top_p ' , info = ' If not set to 1, select tokens with probabilities adding up to less than this number. Higher value = higher range of possible random results. ' )
shared . gradio [ ' top_k ' ] = gr . Slider ( 0 , 200 , value = generate_params [ ' top_k ' ] , step = 1 , label = ' top_k ' , info = ' Similar to top_p, but select instead only the top_k most likely tokens. Higher value = higher range of possible random results. ' )
shared . gradio [ ' typical_p ' ] = gr . Slider ( 0.0 , 1.0 , value = generate_params [ ' typical_p ' ] , step = 0.01 , label = ' typical_p ' , info = ' If not set to 1, select only tokens that are at least this much more likely to appear than random tokens, given the prior text. ' )
2023-03-15 12:24:54 -04:00
with gr . Column ( ) :
2023-04-10 16:19:12 -04:00
shared . gradio [ ' repetition_penalty ' ] = gr . Slider ( 1.0 , 1.5 , value = generate_params [ ' repetition_penalty ' ] , step = 0.01 , label = ' repetition_penalty ' , info = ' Exponential penalty factor for repeating prior tokens. 1 means no penalty, higher value = less repetition, lower value = more repetition. ' )
shared . gradio [ ' encoder_repetition_penalty ' ] = gr . Slider ( 0.8 , 1.5 , value = generate_params [ ' encoder_repetition_penalty ' ] , step = 0.01 , label = ' encoder_repetition_penalty ' , info = ' Also known as the " Hallucinations filter " . Used to penalize tokens that are *not* in the prior text. Higher value = more likely to stay in context, lower value = more likely to diverge. ' )
shared . gradio [ ' no_repeat_ngram_size ' ] = gr . Slider ( 0 , 20 , step = 1 , value = generate_params [ ' no_repeat_ngram_size ' ] , label = ' no_repeat_ngram_size ' , info = ' If not set to 0, specifies the length of token sets that are completely blocked from repeating at all. Higher values = blocks larger phrases, lower values = blocks words or letters from repeating. Only 0 or high values are a good idea in most cases. ' )
shared . gradio [ ' min_length ' ] = gr . Slider ( 0 , 2000 , step = 1 , value = generate_params [ ' min_length ' ] , label = ' min_length ' , info = ' Minimum generation length in tokens. ' )
2023-03-15 12:24:54 -04:00
shared . gradio [ ' do_sample ' ] = gr . Checkbox ( value = generate_params [ ' do_sample ' ] , label = ' do_sample ' )
with gr . Column ( ) :
with gr . Box ( ) :
gr . Markdown ( ' Contrastive search ' )
shared . gradio [ ' penalty_alpha ' ] = gr . Slider ( 0 , 5 , value = generate_params [ ' penalty_alpha ' ] , label = ' penalty_alpha ' )
2023-04-11 17:46:06 -04:00
2023-03-15 12:24:54 -04:00
gr . Markdown ( ' Beam search (uses a lot of VRAM) ' )
with gr . Row ( ) :
with gr . Column ( ) :
shared . gradio [ ' num_beams ' ] = gr . Slider ( 1 , 20 , step = 1 , value = generate_params [ ' num_beams ' ] , label = ' num_beams ' )
shared . gradio [ ' length_penalty ' ] = gr . Slider ( - 5 , 5 , value = generate_params [ ' length_penalty ' ] , label = ' length_penalty ' )
2023-04-18 22:36:23 -04:00
with gr . Column ( ) :
shared . gradio [ ' early_stopping ' ] = gr . Checkbox ( value = generate_params [ ' early_stopping ' ] , label = ' early_stopping ' )
2023-04-11 11:30:06 -04:00
2023-04-16 23:33:22 -04:00
with gr . Box ( ) :
2023-04-11 17:46:06 -04:00
with gr . Row ( ) :
2023-04-16 23:33:22 -04:00
with gr . Column ( ) :
shared . gradio [ ' truncation_length ' ] = gr . Slider ( value = shared . settings [ ' truncation_length ' ] , minimum = shared . settings [ ' truncation_length_min ' ] , maximum = shared . settings [ ' truncation_length_max ' ] , step = 1 , label = ' Truncate the prompt up to this length ' , info = ' The leftmost tokens are removed if the prompt exceeds this length. Most models require this to be at most 2048. ' )
shared . gradio [ ' custom_stopping_strings ' ] = gr . Textbox ( lines = 1 , value = shared . settings [ " custom_stopping_strings " ] or None , label = ' Custom stopping strings ' , info = ' In addition to the defaults. Written between " " and separated by commas. For instance: " \\ nYour Assistant: " , " \\ nThe assistant: " ' )
with gr . Column ( ) :
shared . gradio [ ' add_bos_token ' ] = gr . Checkbox ( value = shared . settings [ ' add_bos_token ' ] , label = ' Add the bos_token to the beginning of prompts ' , info = ' Disabling this can make the replies more creative. ' )
shared . gradio [ ' ban_eos_token ' ] = gr . Checkbox ( value = shared . settings [ ' ban_eos_token ' ] , label = ' Ban the eos_token ' , info = ' Forces the model to never end the generation prematurely. ' )
2023-04-16 13:24:49 -04:00
2023-04-16 23:33:22 -04:00
shared . gradio [ ' skip_special_tokens ' ] = gr . Checkbox ( value = shared . settings [ ' skip_special_tokens ' ] , label = ' Skip special tokens ' , info = ' Some specific models need this unset. ' )
2023-03-15 12:24:54 -04:00
with gr . Accordion ( ' Soft prompt ' , open = False ) :
2023-02-13 13:25:16 -05:00
with gr . Row ( ) :
2023-04-14 10:07:28 -04:00
shared . gradio [ ' softprompts_menu ' ] = gr . Dropdown ( choices = get_available_softprompts ( ) , value = ' None ' , label = ' Soft prompt ' )
2023-04-06 23:15:45 -04:00
ui . create_refresh_button ( shared . gradio [ ' softprompts_menu ' ] , lambda : None , lambda : { ' choices ' : get_available_softprompts ( ) } , ' refresh-button ' )
2023-02-13 13:25:16 -05:00
2023-02-13 21:34:04 -05:00
gr . Markdown ( ' Upload a soft prompt (.zip format): ' )
2023-02-13 13:25:16 -05:00
with gr . Row ( ) :
2023-02-24 15:31:23 -05:00
shared . gradio [ ' upload_softprompt ' ] = gr . File ( type = ' binary ' , file_types = [ ' .zip ' ] )
2023-02-13 13:25:16 -05:00
2023-04-11 11:30:06 -04:00
shared . gradio [ ' preset_menu ' ] . change ( load_preset_values , [ shared . gradio [ k ] for k in [ ' preset_menu ' , ' interface_state ' ] ] , [ shared . gradio [ k ] for k in [ ' interface_state ' , ' do_sample ' , ' temperature ' , ' top_p ' , ' typical_p ' , ' repetition_penalty ' , ' encoder_repetition_penalty ' , ' top_k ' , ' min_length ' , ' no_repeat_ngram_size ' , ' num_beams ' , ' penalty_alpha ' , ' length_penalty ' , ' early_stopping ' ] ] )
2023-04-06 00:22:15 -04:00
shared . gradio [ ' softprompts_menu ' ] . change ( load_soft_prompt , shared . gradio [ ' softprompts_menu ' ] , shared . gradio [ ' softprompts_menu ' ] , show_progress = True )
shared . gradio [ ' upload_softprompt ' ] . upload ( upload_soft_prompt , shared . gradio [ ' upload_softprompt ' ] , shared . gradio [ ' softprompts_menu ' ] )
2023-02-07 20:08:21 -05:00
2023-04-06 23:15:45 -04:00
2023-03-31 22:41:10 -04:00
def set_interface_arguments ( interface_mode , extensions , bool_active ) :
2023-03-16 11:44:03 -04:00
modes = [ " default " , " notebook " , " chat " , " cai_chat " ]
cmd_list = vars ( shared . args )
2023-03-31 22:41:10 -04:00
bool_list = [ k for k in cmd_list if type ( cmd_list [ k ] ) is bool and k not in modes ]
2023-03-16 11:44:03 -04:00
shared . args . extensions = extensions
for k in modes [ 1 : ] :
2023-04-16 00:36:50 -04:00
setattr ( shared . args , k , False )
2023-03-16 11:44:03 -04:00
if interface_mode != " default " :
2023-04-16 00:36:50 -04:00
setattr ( shared . args , interface_mode , True )
2023-03-16 11:44:03 -04:00
2023-03-31 22:41:10 -04:00
for k in bool_list :
2023-04-16 00:36:50 -04:00
setattr ( shared . args , k , False )
2023-03-31 22:41:10 -04:00
for k in bool_active :
2023-04-16 00:36:50 -04:00
setattr ( shared . args , k , True )
2023-03-16 11:44:03 -04:00
shared . need_restart = True
2023-04-06 23:15:45 -04:00
2023-04-14 10:07:28 -04:00
def create_interface ( ) :
# Defining some variables
gen_events = [ ]
default_preset = shared . settings [ ' presets ' ] [ next ( ( k for k in shared . settings [ ' presets ' ] if re . match ( k . lower ( ) , shared . model_name . lower ( ) ) ) , ' default ' ) ]
2023-04-14 13:52:06 -04:00
if len ( shared . lora_names ) == 1 :
default_text = load_prompt ( shared . settings [ ' lora_prompts ' ] [ next ( ( k for k in shared . settings [ ' lora_prompts ' ] if re . match ( k . lower ( ) , shared . lora_names [ 0 ] . lower ( ) ) ) , ' default ' ) ] )
2023-04-12 20:24:26 -04:00
else :
2023-04-14 10:07:28 -04:00
default_text = load_prompt ( shared . settings [ ' prompts ' ] [ next ( ( k for k in shared . settings [ ' prompts ' ] if re . match ( k . lower ( ) , shared . model_name . lower ( ) ) ) , ' default ' ) ] )
title = ' Text generation web UI '
2023-01-19 12:03:47 -05:00
2023-04-14 10:07:28 -04:00
# Authentication variables
auth = None
if shared . args . gradio_auth_path is not None :
gradio_auth_creds = [ ]
with open ( shared . args . gradio_auth_path , ' r ' , encoding = " utf8 " ) as file :
for line in file . readlines ( ) :
gradio_auth_creds + = [ x . strip ( ) for x in line . split ( ' , ' ) if x . strip ( ) ]
auth = [ tuple ( cred . split ( ' : ' ) ) for cred in gradio_auth_creds ]
2023-03-15 11:01:32 -04:00
2023-04-14 10:07:28 -04:00
# Importing the extension files and executing their setup() functions
2023-03-15 22:29:56 -04:00
if shared . args . extensions is not None and len ( shared . args . extensions ) > 0 :
extensions_module . load_extensions ( )
2023-03-15 11:01:32 -04:00
2023-04-18 22:36:23 -04:00
with gr . Blocks ( css = ui . css if not shared . is_chat ( ) else ui . css + ui . chat_css , analytics_enabled = False , title = title , theme = ui . theme ) as shared . gradio [ ' interface ' ] :
2023-04-11 10:46:30 -04:00
2023-04-14 10:07:28 -04:00
# Create chat mode interface
if shared . is_chat ( ) :
2023-04-12 09:27:06 -04:00
shared . input_elements = ui . list_interface_input_elements ( chat = True )
2023-04-11 10:46:30 -04:00
shared . gradio [ ' interface_state ' ] = gr . State ( { k : None for k in shared . input_elements } )
2023-04-02 17:05:21 -04:00
shared . gradio [ ' Chat input ' ] = gr . State ( )
2023-04-11 10:46:30 -04:00
2023-04-12 16:09:56 -04:00
with gr . Tab ( ' Text generation ' , elem_id = ' main ' ) :
2023-04-05 13:22:32 -04:00
shared . gradio [ ' display ' ] = gr . HTML ( value = chat_html_wrapper ( shared . history [ ' visible ' ] , shared . settings [ ' name1 ' ] , shared . settings [ ' name2 ' ] , ' cai-chat ' ) )
2023-03-15 22:29:56 -04:00
shared . gradio [ ' textbox ' ] = gr . Textbox ( label = ' Input ' )
with gr . Row ( ) :
2023-04-12 16:09:56 -04:00
shared . gradio [ ' Stop ' ] = gr . Button ( ' Stop ' , elem_id = ' stop ' )
2023-04-18 23:56:24 -04:00
shared . gradio [ ' Generate ' ] = gr . Button ( ' Generate ' , elem_id = ' Generate ' , variant = ' primary ' )
2023-04-14 22:17:15 -04:00
shared . gradio [ ' Continue ' ] = gr . Button ( ' Continue ' )
2023-04-14 10:07:28 -04:00
2023-03-15 22:29:56 -04:00
with gr . Row ( ) :
2023-04-14 22:17:15 -04:00
shared . gradio [ ' Copy last reply ' ] = gr . Button ( ' Copy last reply ' )
2023-03-15 22:29:56 -04:00
shared . gradio [ ' Regenerate ' ] = gr . Button ( ' Regenerate ' )
2023-04-14 22:17:15 -04:00
shared . gradio [ ' Replace last reply ' ] = gr . Button ( ' Replace last reply ' )
2023-04-14 10:07:28 -04:00
2023-03-15 22:29:56 -04:00
with gr . Row ( ) :
2023-04-14 22:17:15 -04:00
shared . gradio [ ' Impersonate ' ] = gr . Button ( ' Impersonate ' )
2023-04-11 21:21:41 -04:00
shared . gradio [ ' Send dummy message ' ] = gr . Button ( ' Send dummy message ' )
shared . gradio [ ' Send dummy reply ' ] = gr . Button ( ' Send dummy reply ' )
2023-04-14 10:07:28 -04:00
2023-04-11 21:21:41 -04:00
with gr . Row ( ) :
2023-04-14 22:17:15 -04:00
shared . gradio [ ' Remove last ' ] = gr . Button ( ' Remove last ' )
2023-03-15 22:29:56 -04:00
shared . gradio [ ' Clear history ' ] = gr . Button ( ' Clear history ' )
2023-04-12 16:09:56 -04:00
shared . gradio [ ' Clear history-confirm ' ] = gr . Button ( ' Confirm ' , variant = ' stop ' , visible = False )
2023-03-15 22:29:56 -04:00
shared . gradio [ ' Clear history-cancel ' ] = gr . Button ( ' Cancel ' , visible = False )
2023-01-15 16:16:46 -05:00
2023-04-12 16:09:56 -04:00
shared . gradio [ ' mode ' ] = gr . Radio ( choices = [ ' cai-chat ' , ' chat ' , ' instruct ' ] , value = shared . settings [ ' mode ' ] , label = ' Mode ' )
2023-04-24 12:19:42 -04:00
shared . gradio [ ' instruction_template ' ] = gr . Dropdown ( choices = get_available_instruction_templates ( ) , label = ' Instruction template ' , value = ' None ' , visible = shared . settings [ ' mode ' ] == ' instruct ' , info = ' Change this according to the model/LoRA that you are using. ' )
2023-04-05 10:49:59 -04:00
2023-04-12 16:09:56 -04:00
with gr . Tab ( ' Character ' , elem_id = ' chat-settings ' ) :
2023-04-04 21:28:49 -04:00
with gr . Row ( ) :
with gr . Column ( scale = 8 ) :
shared . gradio [ ' name1 ' ] = gr . Textbox ( value = shared . settings [ ' name1 ' ] , lines = 1 , label = ' Your name ' )
shared . gradio [ ' name2 ' ] = gr . Textbox ( value = shared . settings [ ' name2 ' ] , lines = 1 , label = ' Character \' s name ' )
2023-04-05 10:49:59 -04:00
shared . gradio [ ' greeting ' ] = gr . Textbox ( value = shared . settings [ ' greeting ' ] , lines = 4 , label = ' Greeting ' )
shared . gradio [ ' context ' ] = gr . Textbox ( value = shared . settings [ ' context ' ] , lines = 4 , label = ' Context ' )
2023-04-12 16:09:56 -04:00
shared . gradio [ ' end_of_turn ' ] = gr . Textbox ( value = shared . settings [ ' end_of_turn ' ] , lines = 1 , label = ' End of turn string ' )
2023-04-14 10:07:28 -04:00
2023-04-04 21:28:49 -04:00
with gr . Column ( scale = 1 ) :
2023-04-12 16:09:56 -04:00
shared . gradio [ ' character_picture ' ] = gr . Image ( label = ' Character picture ' , type = ' pil ' )
shared . gradio [ ' your_picture ' ] = gr . Image ( label = ' Your picture ' , type = ' pil ' , value = Image . open ( Path ( ' cache/pfp_me.png ' ) ) if Path ( ' cache/pfp_me.png ' ) . exists ( ) else None )
2023-04-14 10:07:28 -04:00
2023-03-15 22:29:56 -04:00
with gr . Row ( ) :
2023-04-24 12:19:42 -04:00
shared . gradio [ ' character_menu ' ] = gr . Dropdown ( choices = get_available_characters ( ) , label = ' Character ' , elem_id = ' character-menu ' )
2023-04-06 23:15:45 -04:00
ui . create_refresh_button ( shared . gradio [ ' character_menu ' ] , lambda : None , lambda : { ' choices ' : get_available_characters ( ) } , ' refresh-button ' )
2023-03-15 22:29:56 -04:00
with gr . Row ( ) :
with gr . Tab ( ' Chat history ' ) :
with gr . Row ( ) :
with gr . Column ( ) :
gr . Markdown ( ' Upload ' )
shared . gradio [ ' upload_chat_history ' ] = gr . File ( type = ' binary ' , file_types = [ ' .json ' , ' .txt ' ] )
2023-04-14 10:07:28 -04:00
2023-03-15 22:29:56 -04:00
with gr . Column ( ) :
gr . Markdown ( ' Download ' )
shared . gradio [ ' download ' ] = gr . File ( )
shared . gradio [ ' download_button ' ] = gr . Button ( value = ' Click me ' )
2023-04-14 10:07:28 -04:00
2023-03-15 22:29:56 -04:00
with gr . Tab ( ' Upload character ' ) :
2023-04-12 16:09:56 -04:00
gr . Markdown ( ' # JSON format ' )
2023-03-15 22:29:56 -04:00
with gr . Row ( ) :
with gr . Column ( ) :
gr . Markdown ( ' 1. Select the JSON file ' )
shared . gradio [ ' upload_json ' ] = gr . File ( type = ' binary ' , file_types = [ ' .json ' ] )
2023-04-14 10:07:28 -04:00
2023-03-15 22:29:56 -04:00
with gr . Column ( ) :
gr . Markdown ( ' 2. Select your character \' s profile picture (optional) ' )
shared . gradio [ ' upload_img_bot ' ] = gr . File ( type = ' binary ' , file_types = [ ' image ' ] )
2023-04-03 17:01:45 -04:00
2023-04-14 10:07:28 -04:00
shared . gradio [ ' Upload character ' ] = gr . Button ( value = ' Submit ' )
2023-04-12 16:09:56 -04:00
gr . Markdown ( ' # TavernAI PNG format ' )
2023-04-03 17:01:45 -04:00
shared . gradio [ ' upload_img_tavern ' ] = gr . File ( type = ' binary ' , file_types = [ ' image ' ] )
2023-03-15 22:29:56 -04:00
with gr . Tab ( " Parameters " , elem_id = " parameters " ) :
with gr . Box ( ) :
gr . Markdown ( " Chat parameters " )
2023-02-15 18:55:32 -05:00
with gr . Row ( ) :
with gr . Column ( ) :
2023-03-15 22:29:56 -04:00
shared . gradio [ ' max_new_tokens ' ] = gr . Slider ( minimum = shared . settings [ ' max_new_tokens_min ' ] , maximum = shared . settings [ ' max_new_tokens_max ' ] , step = 1 , label = ' max_new_tokens ' , value = shared . settings [ ' max_new_tokens ' ] )
2023-04-10 19:06:42 -04:00
shared . gradio [ ' chat_prompt_size ' ] = gr . Slider ( minimum = shared . settings [ ' chat_prompt_size_min ' ] , maximum = shared . settings [ ' chat_prompt_size_max ' ] , step = 1 , label = ' Maximum prompt size in tokens ' , value = shared . settings [ ' chat_prompt_size ' ] )
2023-04-14 10:07:28 -04:00
2023-02-15 18:55:32 -05:00
with gr . Column ( ) :
2023-03-15 22:29:56 -04:00
shared . gradio [ ' chat_generation_attempts ' ] = gr . Slider ( minimum = shared . settings [ ' chat_generation_attempts_min ' ] , maximum = shared . settings [ ' chat_generation_attempts_max ' ] , value = shared . settings [ ' chat_generation_attempts ' ] , step = 1 , label = ' Generation attempts (for longer replies) ' )
2023-04-11 11:30:06 -04:00
shared . gradio [ ' stop_at_newline ' ] = gr . Checkbox ( value = shared . settings [ ' stop_at_newline ' ] , label = ' Stop generating at new line character ' )
2023-03-15 22:29:56 -04:00
create_settings_menus ( default_preset )
2023-04-14 10:07:28 -04:00
# Create notebook mode interface
2023-03-15 22:29:56 -04:00
elif shared . args . notebook :
2023-04-12 09:27:06 -04:00
shared . input_elements = ui . list_interface_input_elements ( chat = False )
2023-04-11 10:46:30 -04:00
shared . gradio [ ' interface_state ' ] = gr . State ( { k : None for k in shared . input_elements } )
2023-04-14 13:34:56 -04:00
shared . gradio [ ' last_input ' ] = gr . State ( ' ' )
2023-03-15 22:29:56 -04:00
with gr . Tab ( " Text generation " , elem_id = " main " ) :
2023-03-15 17:56:26 -04:00
with gr . Row ( ) :
2023-03-26 21:20:30 -04:00
with gr . Column ( scale = 4 ) :
with gr . Tab ( ' Raw ' ) :
2023-04-18 22:36:23 -04:00
shared . gradio [ ' textbox ' ] = gr . Textbox ( value = default_text , elem_classes = " textbox " , lines = 27 )
2023-04-14 10:07:28 -04:00
2023-03-26 21:20:30 -04:00
with gr . Tab ( ' Markdown ' ) :
shared . gradio [ ' markdown ' ] = gr . Markdown ( )
2023-04-14 10:07:28 -04:00
2023-03-26 21:20:30 -04:00
with gr . Tab ( ' HTML ' ) :
shared . gradio [ ' html ' ] = gr . HTML ( )
2023-03-15 11:01:32 -04:00
2023-03-26 21:20:30 -04:00
with gr . Row ( ) :
2023-04-21 01:35:28 -04:00
shared . gradio [ ' Generate ' ] = gr . Button ( ' Generate ' , variant = ' primary ' , elem_classes = " small-button " )
shared . gradio [ ' Stop ' ] = gr . Button ( ' Stop ' , elem_classes = " small-button " )
shared . gradio [ ' Undo ' ] = gr . Button ( ' Undo ' , elem_classes = " small-button " )
shared . gradio [ ' Regenerate ' ] = gr . Button ( ' Regenerate ' , elem_classes = " small-button " )
2023-03-27 11:16:37 -04:00
2023-03-26 21:20:30 -04:00
with gr . Column ( scale = 1 ) :
2023-03-27 12:52:12 -04:00
gr . HTML ( ' <div style= " padding-bottom: 13px " ></div> ' )
2023-03-26 21:20:30 -04:00
shared . gradio [ ' max_new_tokens ' ] = gr . Slider ( minimum = shared . settings [ ' max_new_tokens_min ' ] , maximum = shared . settings [ ' max_new_tokens_max ' ] , step = 1 , label = ' max_new_tokens ' , value = shared . settings [ ' max_new_tokens ' ] )
2023-04-13 10:05:47 -04:00
with gr . Row ( ) :
shared . gradio [ ' prompt_menu ' ] = gr . Dropdown ( choices = get_available_prompts ( ) , value = ' None ' , label = ' Prompt ' )
ui . create_refresh_button ( shared . gradio [ ' prompt_menu ' ] , lambda : None , lambda : { ' choices ' : get_available_prompts ( ) } , ' refresh-button ' )
2023-04-14 10:07:28 -04:00
2023-04-13 10:05:47 -04:00
shared . gradio [ ' save_prompt ' ] = gr . Button ( ' Save prompt ' )
2023-04-21 16:18:34 -04:00
shared . gradio [ ' count_tokens ' ] = gr . Button ( ' Count tokens ' )
2023-04-13 10:05:47 -04:00
shared . gradio [ ' status ' ] = gr . Markdown ( ' ' )
2023-03-15 11:01:32 -04:00
2023-03-15 22:29:56 -04:00
with gr . Tab ( " Parameters " , elem_id = " parameters " ) :
create_settings_menus ( default_preset )
2023-03-15 11:01:32 -04:00
2023-04-14 10:07:28 -04:00
# Create default mode interface
2023-03-15 22:29:56 -04:00
else :
2023-04-12 09:27:06 -04:00
shared . input_elements = ui . list_interface_input_elements ( chat = False )
2023-04-11 10:46:30 -04:00
shared . gradio [ ' interface_state ' ] = gr . State ( { k : None for k in shared . input_elements } )
2023-04-14 13:34:56 -04:00
shared . gradio [ ' last_input ' ] = gr . State ( ' ' )
2023-03-15 22:29:56 -04:00
with gr . Tab ( " Text generation " , elem_id = " main " ) :
with gr . Row ( ) :
with gr . Column ( ) :
2023-04-18 22:36:23 -04:00
shared . gradio [ ' textbox ' ] = gr . Textbox ( value = default_text , elem_classes = " textbox_default " , lines = 27 , label = ' Input ' )
2023-03-15 22:29:56 -04:00
shared . gradio [ ' max_new_tokens ' ] = gr . Slider ( minimum = shared . settings [ ' max_new_tokens_min ' ] , maximum = shared . settings [ ' max_new_tokens_max ' ] , step = 1 , label = ' max_new_tokens ' , value = shared . settings [ ' max_new_tokens ' ] )
with gr . Row ( ) :
2023-04-21 16:18:34 -04:00
shared . gradio [ ' Generate ' ] = gr . Button ( ' Generate ' , variant = ' primary ' , elem_classes = " small-button " )
shared . gradio [ ' Stop ' ] = gr . Button ( ' Stop ' , elem_classes = " small-button " )
shared . gradio [ ' Continue ' ] = gr . Button ( ' Continue ' , elem_classes = " small-button " )
shared . gradio [ ' save_prompt ' ] = gr . Button ( ' Save prompt ' , elem_classes = " small-button " )
shared . gradio [ ' count_tokens ' ] = gr . Button ( ' Count tokens ' , elem_classes = " small-button " )
2023-01-29 07:48:18 -05:00
2023-04-13 10:05:47 -04:00
with gr . Row ( ) :
with gr . Column ( ) :
with gr . Row ( ) :
shared . gradio [ ' prompt_menu ' ] = gr . Dropdown ( choices = get_available_prompts ( ) , value = ' None ' , label = ' Prompt ' )
ui . create_refresh_button ( shared . gradio [ ' prompt_menu ' ] , lambda : None , lambda : { ' choices ' : get_available_prompts ( ) } , ' refresh-button ' )
with gr . Column ( ) :
shared . gradio [ ' status ' ] = gr . Markdown ( ' ' )
2023-01-18 20:44:47 -05:00
2023-03-15 22:29:56 -04:00
with gr . Column ( ) :
with gr . Tab ( ' Raw ' ) :
2023-04-18 22:36:23 -04:00
shared . gradio [ ' output_textbox ' ] = gr . Textbox ( elem_classes = " textbox_default_output " , lines = 27 , label = ' Output ' )
2023-04-13 10:05:47 -04:00
2023-03-15 22:29:56 -04:00
with gr . Tab ( ' Markdown ' ) :
shared . gradio [ ' markdown ' ] = gr . Markdown ( )
2023-04-13 10:05:47 -04:00
2023-03-15 22:29:56 -04:00
with gr . Tab ( ' HTML ' ) :
shared . gradio [ ' html ' ] = gr . HTML ( )
2023-03-27 11:16:37 -04:00
2023-03-15 22:29:56 -04:00
with gr . Tab ( " Parameters " , elem_id = " parameters " ) :
create_settings_menus ( default_preset )
2023-04-14 10:07:28 -04:00
# Model tab
2023-04-06 00:54:05 -04:00
with gr . Tab ( " Model " , elem_id = " model-tab " ) :
create_model_menus ( )
2023-04-14 10:07:28 -04:00
# Training tab
2023-03-27 11:32:32 -04:00
with gr . Tab ( " Training " , elem_id = " training-tab " ) :
training . create_train_interface ( )
2023-04-14 10:07:28 -04:00
# Interface mode tab
2023-03-15 22:29:56 -04:00
with gr . Tab ( " Interface mode " , elem_id = " interface-mode " ) :
modes = [ " default " , " notebook " , " chat " , " cai_chat " ]
current_mode = " default "
2023-03-16 11:44:03 -04:00
for mode in modes [ 1 : ] :
2023-04-16 00:36:50 -04:00
if getattr ( shared . args , mode ) :
2023-03-15 22:29:56 -04:00
current_mode = mode
2023-03-16 11:44:03 -04:00
break
cmd_list = vars ( shared . args )
2023-04-14 10:07:28 -04:00
bool_list = [ k for k in cmd_list if type ( cmd_list [ k ] ) is bool and k not in modes + ui . list_model_elements ( ) ]
2023-03-31 22:41:10 -04:00
bool_active = [ k for k in bool_list if vars ( shared . args ) [ k ] ]
2023-03-15 22:29:56 -04:00
2023-03-15 22:43:35 -04:00
gr . Markdown ( " *Experimental* " )
2023-03-16 11:44:03 -04:00
shared . gradio [ ' interface_modes_menu ' ] = gr . Dropdown ( choices = modes , value = current_mode , label = " Mode " )
shared . gradio [ ' extensions_menu ' ] = gr . CheckboxGroup ( choices = get_available_extensions ( ) , value = shared . args . extensions , label = " Available extensions " )
2023-03-31 22:41:10 -04:00
shared . gradio [ ' bool_menu ' ] = gr . CheckboxGroup ( choices = bool_list , value = bool_active , label = " Boolean command-line flags " )
2023-04-07 11:22:14 -04:00
shared . gradio [ ' reset_interface ' ] = gr . Button ( " Apply and restart the interface " )
2023-03-16 09:19:00 -04:00
2023-04-08 16:25:21 -04:00
# Reset interface event
shared . gradio [ ' reset_interface ' ] . click (
set_interface_arguments , [ shared . gradio [ k ] for k in [ ' interface_modes_menu ' , ' extensions_menu ' , ' bool_menu ' ] ] , None ) . then (
lambda : None , None , None , _js = ' () => { document.body.innerHTML= \' <h1 style= " font-family:monospace;margin-top:20 % ;color:lightgray;text-align:center; " >Reloading...</h1> \' ; setTimeout(function() { location.reload()},2500); return []} ' )
2023-03-27 12:41:06 -04:00
2023-04-14 10:07:28 -04:00
# chat mode event handlers
if shared . is_chat ( ) :
shared . input_params = [ shared . gradio [ k ] for k in [ ' Chat input ' , ' interface_state ' ] ]
clear_arr = [ shared . gradio [ k ] for k in [ ' Clear history-confirm ' , ' Clear history ' , ' Clear history-cancel ' ] ]
reload_inputs = [ shared . gradio [ k ] for k in [ ' name1 ' , ' name2 ' , ' mode ' ] ]
gen_events . append ( shared . gradio [ ' Generate ' ] . click (
ui . gather_interface_values , [ shared . gradio [ k ] for k in shared . input_elements ] , shared . gradio [ ' interface_state ' ] ) . then (
lambda x : ( x , ' ' ) , shared . gradio [ ' textbox ' ] , [ shared . gradio [ ' Chat input ' ] , shared . gradio [ ' textbox ' ] ] , show_progress = False ) . then (
chat . cai_chatbot_wrapper , shared . input_params , shared . gradio [ ' display ' ] , show_progress = shared . args . no_stream ) . then (
chat . save_history , shared . gradio [ ' mode ' ] , None , show_progress = False )
)
gen_events . append ( shared . gradio [ ' textbox ' ] . submit (
ui . gather_interface_values , [ shared . gradio [ k ] for k in shared . input_elements ] , shared . gradio [ ' interface_state ' ] ) . then (
lambda x : ( x , ' ' ) , shared . gradio [ ' textbox ' ] , [ shared . gradio [ ' Chat input ' ] , shared . gradio [ ' textbox ' ] ] , show_progress = False ) . then (
chat . cai_chatbot_wrapper , shared . input_params , shared . gradio [ ' display ' ] , show_progress = shared . args . no_stream ) . then (
chat . save_history , shared . gradio [ ' mode ' ] , None , show_progress = False )
)
gen_events . append ( shared . gradio [ ' Regenerate ' ] . click (
ui . gather_interface_values , [ shared . gradio [ k ] for k in shared . input_elements ] , shared . gradio [ ' interface_state ' ] ) . then (
chat . regenerate_wrapper , shared . input_params , shared . gradio [ ' display ' ] , show_progress = shared . args . no_stream ) . then (
chat . save_history , shared . gradio [ ' mode ' ] , None , show_progress = False )
)
gen_events . append ( shared . gradio [ ' Continue ' ] . click (
ui . gather_interface_values , [ shared . gradio [ k ] for k in shared . input_elements ] , shared . gradio [ ' interface_state ' ] ) . then (
chat . continue_wrapper , shared . input_params , shared . gradio [ ' display ' ] , show_progress = shared . args . no_stream ) . then (
chat . save_history , shared . gradio [ ' mode ' ] , None , show_progress = False )
)
gen_events . append ( shared . gradio [ ' Impersonate ' ] . click (
ui . gather_interface_values , [ shared . gradio [ k ] for k in shared . input_elements ] , shared . gradio [ ' interface_state ' ] ) . then (
chat . impersonate_wrapper , shared . input_params , shared . gradio [ ' textbox ' ] , show_progress = shared . args . no_stream )
)
shared . gradio [ ' Replace last reply ' ] . click (
chat . replace_last_reply , [ shared . gradio [ k ] for k in [ ' textbox ' , ' name1 ' , ' name2 ' , ' mode ' ] ] , shared . gradio [ ' display ' ] , show_progress = shared . args . no_stream ) . then (
lambda x : ' ' , shared . gradio [ ' textbox ' ] , shared . gradio [ ' textbox ' ] , show_progress = False ) . then (
chat . save_history , shared . gradio [ ' mode ' ] , None , show_progress = False )
shared . gradio [ ' Send dummy message ' ] . click (
chat . send_dummy_message , [ shared . gradio [ k ] for k in [ ' textbox ' , ' name1 ' , ' name2 ' , ' mode ' ] ] , shared . gradio [ ' display ' ] , show_progress = shared . args . no_stream ) . then (
lambda x : ' ' , shared . gradio [ ' textbox ' ] , shared . gradio [ ' textbox ' ] , show_progress = False ) . then (
chat . save_history , shared . gradio [ ' mode ' ] , None , show_progress = False )
shared . gradio [ ' Send dummy reply ' ] . click (
chat . send_dummy_reply , [ shared . gradio [ k ] for k in [ ' textbox ' , ' name1 ' , ' name2 ' , ' mode ' ] ] , shared . gradio [ ' display ' ] , show_progress = shared . args . no_stream ) . then (
lambda x : ' ' , shared . gradio [ ' textbox ' ] , shared . gradio [ ' textbox ' ] , show_progress = False ) . then (
chat . save_history , shared . gradio [ ' mode ' ] , None , show_progress = False )
shared . gradio [ ' Clear history-confirm ' ] . click (
lambda : [ gr . update ( visible = False ) , gr . update ( visible = True ) , gr . update ( visible = False ) ] , None , clear_arr ) . then (
chat . clear_chat_log , [ shared . gradio [ k ] for k in [ ' name1 ' , ' name2 ' , ' greeting ' , ' mode ' ] ] , shared . gradio [ ' display ' ] ) . then (
chat . save_history , shared . gradio [ ' mode ' ] , None , show_progress = False )
shared . gradio [ ' Stop ' ] . click (
stop_everything_event , None , None , queue = False , cancels = gen_events if shared . args . no_stream else None ) . then (
chat . redraw_html , reload_inputs , shared . gradio [ ' display ' ] )
shared . gradio [ ' mode ' ] . change (
lambda x : gr . update ( visible = x == ' instruct ' ) , shared . gradio [ ' mode ' ] , shared . gradio [ ' instruction_template ' ] ) . then (
lambda x : gr . update ( interactive = x != ' instruct ' ) , shared . gradio [ ' mode ' ] , shared . gradio [ ' character_menu ' ] ) . then (
chat . redraw_html , reload_inputs , shared . gradio [ ' display ' ] )
shared . gradio [ ' instruction_template ' ] . change (
2023-04-16 13:24:49 -04:00
chat . load_character , [ shared . gradio [ k ] for k in [ ' instruction_template ' , ' name1 ' , ' name2 ' , ' mode ' ] ] , [ shared . gradio [ k ] for k in [ ' name1 ' , ' name2 ' , ' character_picture ' , ' greeting ' , ' context ' , ' end_of_turn ' , ' display ' ] ] ) . then (
2023-04-14 10:07:28 -04:00
chat . redraw_html , reload_inputs , shared . gradio [ ' display ' ] )
shared . gradio [ ' upload_chat_history ' ] . upload (
chat . load_history , [ shared . gradio [ k ] for k in [ ' upload_chat_history ' , ' name1 ' , ' name2 ' ] ] , None ) . then (
chat . redraw_html , reload_inputs , shared . gradio [ ' display ' ] )
shared . gradio [ ' Copy last reply ' ] . click ( chat . send_last_reply_to_input , None , shared . gradio [ ' textbox ' ] , show_progress = shared . args . no_stream )
shared . gradio [ ' Clear history ' ] . click ( lambda : [ gr . update ( visible = True ) , gr . update ( visible = False ) , gr . update ( visible = True ) ] , None , clear_arr )
shared . gradio [ ' Clear history-cancel ' ] . click ( lambda : [ gr . update ( visible = False ) , gr . update ( visible = True ) , gr . update ( visible = False ) ] , None , clear_arr )
shared . gradio [ ' Remove last ' ] . click ( chat . remove_last_message , [ shared . gradio [ k ] for k in [ ' name1 ' , ' name2 ' , ' mode ' ] ] , [ shared . gradio [ ' display ' ] , shared . gradio [ ' textbox ' ] ] , show_progress = False )
shared . gradio [ ' download_button ' ] . click ( lambda x : chat . save_history ( x , timestamp = True ) , shared . gradio [ ' mode ' ] , shared . gradio [ ' download ' ] )
shared . gradio [ ' Upload character ' ] . click ( chat . upload_character , [ shared . gradio [ ' upload_json ' ] , shared . gradio [ ' upload_img_bot ' ] ] , [ shared . gradio [ ' character_menu ' ] ] )
shared . gradio [ ' character_menu ' ] . change ( chat . load_character , [ shared . gradio [ k ] for k in [ ' character_menu ' , ' name1 ' , ' name2 ' , ' mode ' ] ] , [ shared . gradio [ k ] for k in [ ' name1 ' , ' name2 ' , ' character_picture ' , ' greeting ' , ' context ' , ' end_of_turn ' , ' display ' ] ] )
shared . gradio [ ' upload_img_tavern ' ] . upload ( chat . upload_tavern_character , [ shared . gradio [ ' upload_img_tavern ' ] , shared . gradio [ ' name1 ' ] , shared . gradio [ ' name2 ' ] ] , [ shared . gradio [ ' character_menu ' ] ] )
shared . gradio [ ' your_picture ' ] . change ( chat . upload_your_profile_picture , [ shared . gradio [ k ] for k in [ ' your_picture ' , ' name1 ' , ' name2 ' , ' mode ' ] ] , shared . gradio [ ' display ' ] )
shared . gradio [ ' interface ' ] . load ( None , None , None , _js = f " () => {{ { ui . main_js + ui . chat_js } }} " )
# notebook/default modes event handlers
else :
shared . input_params = [ shared . gradio [ k ] for k in [ ' textbox ' , ' interface_state ' ] ]
if shared . args . notebook :
output_params = [ shared . gradio [ k ] for k in [ ' textbox ' , ' markdown ' , ' html ' ] ]
else :
output_params = [ shared . gradio [ k ] for k in [ ' output_textbox ' , ' markdown ' , ' html ' ] ]
gen_events . append ( shared . gradio [ ' Generate ' ] . click (
2023-04-14 13:34:56 -04:00
lambda x : x , shared . gradio [ ' textbox ' ] , shared . gradio [ ' last_input ' ] ) . then (
2023-04-14 10:07:28 -04:00
ui . gather_interface_values , [ shared . gradio [ k ] for k in shared . input_elements ] , shared . gradio [ ' interface_state ' ] ) . then (
generate_reply , shared . input_params , output_params , show_progress = shared . args . no_stream ) # .then(
# None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[0]; element.scrollTop = element.scrollHeight}")
)
gen_events . append ( shared . gradio [ ' textbox ' ] . submit (
2023-04-14 13:34:56 -04:00
lambda x : x , shared . gradio [ ' textbox ' ] , shared . gradio [ ' last_input ' ] ) . then (
2023-04-14 10:07:28 -04:00
ui . gather_interface_values , [ shared . gradio [ k ] for k in shared . input_elements ] , shared . gradio [ ' interface_state ' ] ) . then (
generate_reply , shared . input_params , output_params , show_progress = shared . args . no_stream ) # .then(
# None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[0]; element.scrollTop = element.scrollHeight}")
)
2023-04-14 13:34:56 -04:00
if shared . args . notebook :
shared . gradio [ ' Undo ' ] . click ( lambda x : x , shared . gradio [ ' last_input ' ] , shared . gradio [ ' textbox ' ] , show_progress = False )
gen_events . append ( shared . gradio [ ' Regenerate ' ] . click (
lambda x : x , shared . gradio [ ' last_input ' ] , shared . gradio [ ' textbox ' ] , show_progress = False ) . then (
ui . gather_interface_values , [ shared . gradio [ k ] for k in shared . input_elements ] , shared . gradio [ ' interface_state ' ] ) . then (
generate_reply , shared . input_params , output_params , show_progress = shared . args . no_stream ) # .then(
# None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[0]; element.scrollTop = element.scrollHeight}")
)
else :
gen_events . append ( shared . gradio [ ' Continue ' ] . click (
ui . gather_interface_values , [ shared . gradio [ k ] for k in shared . input_elements ] , shared . gradio [ ' interface_state ' ] ) . then (
generate_reply , [ shared . gradio [ ' output_textbox ' ] ] + shared . input_params [ 1 : ] , output_params , show_progress = shared . args . no_stream ) # .then(
# None, None, None, _js="() => {element = document.getElementsByTagName('textarea')[1]; element.scrollTop = element.scrollHeight}")
)
2023-04-14 10:07:28 -04:00
shared . gradio [ ' Stop ' ] . click ( stop_everything_event , None , None , queue = False , cancels = gen_events if shared . args . no_stream else None )
2023-04-21 16:18:34 -04:00
shared . gradio [ ' prompt_menu ' ] . change ( load_prompt , shared . gradio [ ' prompt_menu ' ] , shared . gradio [ ' textbox ' ] , show_progress = False )
shared . gradio [ ' save_prompt ' ] . click ( save_prompt , shared . gradio [ ' textbox ' ] , shared . gradio [ ' status ' ] , show_progress = False )
shared . gradio [ ' count_tokens ' ] . click ( count_tokens , shared . gradio [ ' textbox ' ] , shared . gradio [ ' status ' ] , show_progress = False )
2023-04-14 10:07:28 -04:00
shared . gradio [ ' interface ' ] . load ( None , None , None , _js = f " () => {{ { ui . main_js } }} " )
2023-03-27 22:29:52 -04:00
2023-04-24 02:05:47 -04:00
shared . gradio [ ' interface ' ] . load ( partial ( ui . apply_interface_values , { } , use_persistent = True ) , None , [ shared . gradio [ k ] for k in ui . list_interface_input_elements ( chat = shared . is_chat ( ) ) ] , show_progress = False )
2023-04-24 02:30:35 -04:00
# Extensions block
if shared . args . extensions is not None :
extensions_module . create_extensions_block ( )
2023-04-24 02:05:47 -04:00
2023-03-15 22:29:56 -04:00
# Launch the interface
shared . gradio [ ' interface ' ] . queue ( )
if shared . args . listen :
2023-04-13 20:35:08 -04:00
shared . gradio [ ' interface ' ] . launch ( prevent_thread_lock = True , share = shared . args . share , server_name = shared . args . listen_host or ' 0.0.0.0 ' , server_port = shared . args . listen_port , inbrowser = shared . args . auto_launch , auth = auth )
2023-03-15 19:44:34 -04:00
else :
2023-03-27 22:29:52 -04:00
shared . gradio [ ' interface ' ] . launch ( prevent_thread_lock = True , share = shared . args . share , server_port = shared . args . listen_port , inbrowser = shared . args . auto_launch , auth = auth )
2023-03-15 22:29:56 -04:00
2023-04-06 23:15:45 -04:00
2023-04-14 10:07:28 -04:00
if __name__ == " __main__ " :
# Loading custom settings
settings_file = None
if shared . args . settings is not None and Path ( shared . args . settings ) . exists ( ) :
settings_file = Path ( shared . args . settings )
elif Path ( ' settings.json ' ) . exists ( ) :
settings_file = Path ( ' settings.json ' )
if settings_file is not None :
print ( f " Loading settings from { settings_file } ... " )
new_settings = json . loads ( open ( settings_file , ' r ' ) . read ( ) )
for item in new_settings :
shared . settings [ item ] = new_settings [ item ]
# Default extensions
extensions_module . available_extensions = get_available_extensions ( )
if shared . is_chat ( ) :
for extension in shared . settings [ ' chat_default_extensions ' ] :
shared . args . extensions = shared . args . extensions or [ ]
if extension not in shared . args . extensions :
shared . args . extensions . append ( extension )
else :
for extension in shared . settings [ ' default_extensions ' ] :
shared . args . extensions = shared . args . extensions or [ ]
if extension not in shared . args . extensions :
shared . args . extensions . append ( extension )
available_models = get_available_models ( )
# Model defined through --model
if shared . args . model is not None :
shared . model_name = shared . args . model
# Only one model is available
elif len ( available_models ) == 1 :
shared . model_name = available_models [ 0 ]
# Select the model from a command-line menu
elif shared . args . model_menu :
if len ( available_models ) == 0 :
print ( ' No models are available! Please download at least one. ' )
sys . exit ( 0 )
else :
print ( ' The following models are available: \n ' )
for i , model in enumerate ( available_models ) :
print ( f ' { i + 1 } . { model } ' )
2023-04-24 02:05:47 -04:00
2023-04-14 10:07:28 -04:00
print ( f ' \n Which one do you want to load? 1- { len ( available_models ) } \n ' )
i = int ( input ( ) ) - 1
print ( )
2023-04-24 02:05:47 -04:00
2023-04-14 10:07:28 -04:00
shared . model_name = available_models [ i ]
# If any model has been selected, load it
if shared . model_name != ' None ' :
model_settings = get_model_specific_settings ( shared . model_name )
shared . settings . update ( model_settings ) # hijacking the interface defaults
2023-04-14 14:24:03 -04:00
update_model_parameters ( model_settings , initial = True ) # hijacking the command-line arguments
2023-04-14 10:07:28 -04:00
# Load the model
shared . model , shared . tokenizer = load_model ( shared . model_name )
if shared . args . lora :
2023-04-14 13:52:06 -04:00
add_lora_to_model ( [ shared . args . lora ] )
2023-04-14 10:07:28 -04:00
2023-04-24 12:19:42 -04:00
# Force a character to be loaded
if shared . is_chat ( ) :
shared . persistent_interface_state . update ( {
' mode ' : shared . settings [ ' mode ' ] ,
' character_menu ' : shared . args . character or shared . settings [ ' character ' ] ,
' instruction_template ' : shared . settings [ ' instruction_template ' ]
} )
2023-04-14 10:07:28 -04:00
# Launch the web UI
create_interface ( )
while True :
time . sleep ( 0.5 )
if shared . need_restart :
shared . need_restart = False
shared . gradio [ ' interface ' ] . close ( )
create_interface ( )