text-generation-webui/modules/callbacks.py

98 lines
2.7 KiB
Python
Raw Normal View History

2023-03-23 21:16:08 -04:00
import gc
from queue import Queue
from threading import Thread
import torch
import transformers
2023-03-23 21:19:01 -04:00
import modules.shared as shared
2023-03-17 10:42:25 -04:00
# Copied from https://github.com/PygmalionAI/gradio-ui/
class _SentinelTokenStoppingCriteria(transformers.StoppingCriteria):
def __init__(self, sentinel_token_ids: list[torch.LongTensor], starting_idx: int):
transformers.StoppingCriteria.__init__(self)
self.sentinel_token_ids = sentinel_token_ids
self.starting_idx = starting_idx
def __call__(self, input_ids: torch.LongTensor, _scores: torch.FloatTensor) -> bool:
for sample in input_ids:
trimmed_sample = sample[self.starting_idx:]
for i in range(len(self.sentinel_token_ids)):
# Can't unfold, output is still too tiny. Skip.
if trimmed_sample.shape[-1] < self.sentinel_token_ids[i].shape[-1]:
continue
for window in trimmed_sample.unfold(0, self.sentinel_token_ids[i].shape[-1], 1):
if torch.all(torch.eq(self.sentinel_token_ids[i], window)):
return True
return False
class Stream(transformers.StoppingCriteria):
def __init__(self, callback_func=None):
self.callback_func = callback_func
def __call__(self, input_ids, scores) -> bool:
if self.callback_func is not None:
self.callback_func(input_ids[0])
return False
class Iteratorize:
"""
Transforms a function that takes a callback
into a lazy iterator (generator).
"""
def __init__(self, func, kwargs={}, callback=None):
self.mfunc=func
self.c_callback=callback
self.q = Queue()
self.sentinel = object()
self.kwargs = kwargs
self.stop_now = False
def _callback(val):
if self.stop_now:
raise ValueError
self.q.put(val)
def gentask():
try:
ret = self.mfunc(callback=_callback, **self.kwargs)
except ValueError:
pass
2023-03-12 00:53:08 -05:00
clear_torch_cache()
self.q.put(self.sentinel)
if self.c_callback:
self.c_callback(ret)
self.thread = Thread(target=gentask)
self.thread.start()
def __iter__(self):
return self
def __next__(self):
obj = self.q.get(True,None)
if obj is self.sentinel:
raise StopIteration
else:
return obj
def __del__(self):
clear_torch_cache()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.stop_now = True
clear_torch_cache()
2023-03-23 21:12:24 -04:00
def clear_torch_cache():
gc.collect()
if not shared.args.cpu:
torch.cuda.empty_cache()