text-generation-webui/modules/models_settings.py

315 lines
12 KiB
Python
Raw Normal View History

2023-09-28 22:19:47 -04:00
import json
import re
from pathlib import Path
import yaml
from modules import chat, loaders, metadata_gguf, shared, ui
2023-09-11 17:49:30 -04:00
def get_fallback_settings():
return {
'wbits': 'None',
'groupsize': 'None',
'desc_act': False,
2023-09-28 22:19:47 -04:00
'max_seq_len': 2048,
2023-09-11 17:49:30 -04:00
'n_ctx': 2048,
'rope_freq_base': 0,
'compress_pos_emb': 1,
'alpha_value': 1,
'truncation_length': shared.settings['truncation_length'],
'skip_special_tokens': shared.settings['skip_special_tokens'],
'custom_stopping_strings': shared.settings['custom_stopping_strings'],
2023-09-11 17:49:30 -04:00
}
def get_model_metadata(model):
model_settings = {}
2023-09-11 17:49:30 -04:00
# Get settings from models/config.yaml and models/config-user.yaml
settings = shared.model_config
for pat in settings:
if re.match(pat.lower(), model.lower()):
for k in settings[pat]:
model_settings[k] = settings[pat][k]
path = Path(f'{shared.args.model_dir}/{model}/config.json')
if path.exists():
hf_metadata = json.loads(open(path, 'r', encoding='utf-8').read())
else:
hf_metadata = None
2023-09-11 17:49:30 -04:00
if 'loader' not in model_settings:
2024-05-21 12:32:02 -04:00
model_settings['loader'] = infer_loader(model, model_settings)
2023-09-11 17:49:30 -04:00
# GGUF metadata
2024-04-04 19:23:58 -04:00
if model_settings['loader'] in ['llama.cpp', 'llamacpp_HF']:
2023-09-11 17:49:30 -04:00
path = Path(f'{shared.args.model_dir}/{model}')
if path.is_file():
model_file = path
else:
model_file = list(path.glob('*.gguf'))[0]
metadata = metadata_gguf.load_metadata(model_file)
for k in metadata:
if k.endswith('context_length'):
model_settings['n_ctx'] = metadata[k]
elif k.endswith('rope.freq_base'):
model_settings['rope_freq_base'] = metadata[k]
elif k.endswith('rope.scale_linear'):
model_settings['compress_pos_emb'] = metadata[k]
elif k.endswith('rope.scaling.factor'):
model_settings['compress_pos_emb'] = metadata[k]
elif k.endswith('block_count'):
model_settings['n_gpu_layers'] = metadata[k] + 1
if 'tokenizer.chat_template' in metadata:
template = metadata['tokenizer.chat_template']
eos_token = metadata['tokenizer.ggml.tokens'][metadata['tokenizer.ggml.eos_token_id']]
if 'tokenizer.ggml.bos_token_id' in metadata:
bos_token = metadata['tokenizer.ggml.tokens'][metadata['tokenizer.ggml.bos_token_id']]
else:
bos_token = ""
template = template.replace('eos_token', "'{}'".format(eos_token))
template = template.replace('bos_token', "'{}'".format(bos_token))
template = re.sub(r'raise_exception\([^)]*\)', "''", template)
template = re.sub(r'{% if add_generation_prompt %}.*', '', template, flags=re.DOTALL)
model_settings['instruction_template'] = 'Custom (obtained from model metadata)'
model_settings['instruction_template_str'] = template
2023-09-28 22:19:47 -04:00
else:
# Transformers metadata
if hf_metadata is not None:
metadata = json.loads(open(path, 'r', encoding='utf-8').read())
2024-06-24 01:30:03 -04:00
if 'pretrained_config' in metadata:
metadata = metadata['pretrained_config']
for k in ['max_position_embeddings', 'model_max_length', 'max_seq_len']:
if k in metadata:
model_settings['truncation_length'] = metadata[k]
model_settings['max_seq_len'] = metadata[k]
2023-09-28 22:19:47 -04:00
if 'rope_theta' in metadata:
model_settings['rope_freq_base'] = metadata['rope_theta']
elif 'attn_config' in metadata and 'rope_theta' in metadata['attn_config']:
model_settings['rope_freq_base'] = metadata['attn_config']['rope_theta']
if 'rope_scaling' in metadata and type(metadata['rope_scaling']) is dict and all(key in metadata['rope_scaling'] for key in ('type', 'factor')):
if metadata['rope_scaling']['type'] == 'linear':
model_settings['compress_pos_emb'] = metadata['rope_scaling']['factor']
# Read GPTQ metadata for old GPTQ loaders
if 'quantization_config' in metadata and metadata['quantization_config'].get('quant_method', '') != 'exl2':
if 'bits' in metadata['quantization_config']:
model_settings['wbits'] = metadata['quantization_config']['bits']
if 'group_size' in metadata['quantization_config']:
model_settings['groupsize'] = metadata['quantization_config']['group_size']
if 'desc_act' in metadata['quantization_config']:
model_settings['desc_act'] = metadata['quantization_config']['desc_act']
# Read AutoGPTQ metadata
path = Path(f'{shared.args.model_dir}/{model}/quantize_config.json')
if path.exists():
metadata = json.loads(open(path, 'r', encoding='utf-8').read())
if 'bits' in metadata:
model_settings['wbits'] = metadata['bits']
if 'group_size' in metadata:
model_settings['groupsize'] = metadata['group_size']
if 'desc_act' in metadata:
model_settings['desc_act'] = metadata['desc_act']
# Try to find the Jinja instruct template
path = Path(f'{shared.args.model_dir}/{model}') / 'tokenizer_config.json'
if path.exists():
metadata = json.loads(open(path, 'r', encoding='utf-8').read())
if 'chat_template' in metadata:
template = metadata['chat_template']
if isinstance(template, list):
template = template[0]['template']
for k in ['eos_token', 'bos_token']:
if k in metadata:
value = metadata[k]
if type(value) is dict:
value = value['content']
template = template.replace(k, "'{}'".format(value))
template = re.sub(r'raise_exception\([^)]*\)', "''", template)
template = re.sub(r'{% if add_generation_prompt %}.*', '', template, flags=re.DOTALL)
model_settings['instruction_template'] = 'Custom (obtained from model metadata)'
model_settings['instruction_template_str'] = template
if 'instruction_template' not in model_settings:
model_settings['instruction_template'] = 'Alpaca'
# Ignore rope_freq_base if set to the default value
2023-10-10 17:08:11 -04:00
if 'rope_freq_base' in model_settings and model_settings['rope_freq_base'] == 10000:
model_settings.pop('rope_freq_base')
# Apply user settings from models/config-user.yaml
settings = shared.user_config
for pat in settings:
if re.match(pat.lower(), model.lower()):
for k in settings[pat]:
model_settings[k] = settings[pat][k]
2023-09-11 17:49:30 -04:00
# Load instruction template if defined by name rather than by value
if model_settings['instruction_template'] != 'Custom (obtained from model metadata)':
model_settings['instruction_template_str'] = chat.load_instruction_template(model_settings['instruction_template'])
return model_settings
2023-09-11 17:49:30 -04:00
def infer_loader(model_name, model_settings):
path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
if not path_to_model.exists():
loader = None
2023-09-28 22:32:35 -04:00
elif (path_to_model / 'quantize_config.json').exists() or ('wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0):
2023-12-30 23:57:06 -05:00
loader = 'ExLlamav2_HF'
2023-10-05 12:22:37 -04:00
elif (path_to_model / 'quant_config.json').exists() or re.match(r'.*-awq', model_name.lower()):
2023-10-05 12:19:18 -04:00
loader = 'AutoAWQ'
elif len(list(path_to_model.glob('*.gguf'))) > 0 and path_to_model.is_dir() and (path_to_model / 'tokenizer_config.json').exists():
loader = 'llamacpp_HF'
2023-09-11 10:30:56 -04:00
elif len(list(path_to_model.glob('*.gguf'))) > 0:
loader = 'llama.cpp'
2023-09-11 10:30:56 -04:00
elif re.match(r'.*\.gguf', model_name.lower()):
loader = 'llama.cpp'
2023-09-23 16:04:27 -04:00
elif re.match(r'.*exl2', model_name.lower()):
loader = 'ExLlamav2_HF'
elif re.match(r'.*-hqq', model_name.lower()):
return 'HQQ'
else:
loader = 'Transformers'
return loader
def update_model_parameters(state, initial=False):
2023-11-15 18:51:37 -05:00
'''
UI: update the command-line arguments based on the interface values
'''
elements = ui.list_model_elements() # the names of the parameters
gpu_memories = []
for i, element in enumerate(elements):
if element not in state:
continue
value = state[element]
if element.startswith('gpu_memory'):
gpu_memories.append(value)
continue
if initial and element in shared.provided_arguments:
continue
# Setting null defaults
if element in ['wbits', 'groupsize'] and value == 'None':
value = vars(shared.args_defaults)[element]
elif element in ['cpu_memory'] and value == 0:
value = vars(shared.args_defaults)[element]
# Making some simple conversions
2024-06-12 21:56:44 -04:00
if element in ['wbits', 'groupsize']:
value = int(value)
elif element == 'cpu_memory' and value is not None:
value = f"{value}MiB"
setattr(shared.args, element, value)
found_positive = False
for i in gpu_memories:
if i > 0:
found_positive = True
break
if not (initial and vars(shared.args)['gpu_memory'] != vars(shared.args_defaults)['gpu_memory']):
if found_positive:
shared.args.gpu_memory = [f"{i}MiB" for i in gpu_memories]
else:
shared.args.gpu_memory = None
def apply_model_settings_to_state(model, state):
2023-11-15 18:51:37 -05:00
'''
UI: update the state variable with the model settings
'''
2023-09-11 17:49:30 -04:00
model_settings = get_model_metadata(model)
if 'loader' in model_settings:
loader = model_settings.pop('loader')
2023-08-24 15:27:36 -04:00
# If the user is using an alternative loader for the same model type, let them keep using it
2024-05-21 12:32:02 -04:00
if not (loader == 'ExLlamav2_HF' and state['loader'] in ['ExLlamav2', 'AutoGPTQ']):
state['loader'] = loader
for k in model_settings:
if k in state:
if k in ['wbits', 'groupsize']:
state[k] = str(model_settings[k])
else:
state[k] = model_settings[k]
return state
def save_model_settings(model, state):
2023-11-15 18:51:37 -05:00
'''
Save the settings for this model to models/config-user.yaml
'''
if model == 'None':
yield ("Not saving the settings because no model is selected in the menu.")
return
user_config = shared.load_user_config()
model_regex = model + '$' # For exact matches
if model_regex not in user_config:
user_config[model_regex] = {}
for k in ui.list_model_elements():
if k == 'loader' or k in loaders.loaders_and_params[state['loader']]:
user_config[model_regex][k] = state[k]
shared.user_config = user_config
output = yaml.dump(user_config, sort_keys=False)
p = Path(f'{shared.args.model_dir}/config-user.yaml')
with open(p, 'w') as f:
f.write(output)
yield (f"Settings for `{model}` saved to `{p}`.")
def save_instruction_template(model, template):
'''
Similar to the function above, but it saves only the instruction template.
'''
if model == 'None':
yield ("Not saving the template because no model is selected in the menu.")
return
user_config = shared.load_user_config()
model_regex = model + '$' # For exact matches
if model_regex not in user_config:
user_config[model_regex] = {}
if template == 'None':
user_config[model_regex].pop('instruction_template', None)
else:
user_config[model_regex]['instruction_template'] = template
shared.user_config = user_config
output = yaml.dump(user_config, sort_keys=False)
p = Path(f'{shared.args.model_dir}/config-user.yaml')
with open(p, 'w') as f:
f.write(output)
if template == 'None':
yield (f"Instruction template for `{model}` unset in `{p}`, as the value for template was `{template}`.")
else:
yield (f"Instruction template for `{model}` saved to `{p}` as `{template}`.")