text-generation-webui/download-model.py

249 lines
9.1 KiB
Python
Raw Normal View History

2023-01-06 17:57:31 -05:00
'''
Downloads models from Hugging Face to models/model-name.
Example:
python download-model.py facebook/opt-1.3b
'''
import argparse
import base64
import datetime
2023-03-31 00:31:47 -04:00
import hashlib
import json
import re
import sys
from pathlib import Path
import requests
import tqdm
from tqdm.contrib.concurrent import thread_map
parser = argparse.ArgumentParser()
parser.add_argument('MODEL', type=str, default=None, nargs='?')
parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.')
parser.add_argument('--threads', type=int, default=1, help='Number of files to download simultaneously.')
parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).')
parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.')
parser.add_argument('--clean', action='store_true', help='Does not resume the previous download.')
parser.add_argument('--check', action='store_true', help='Validates the checksums of model files.')
args = parser.parse_args()
2023-01-06 17:57:31 -05:00
def get_file(url, output_folder):
filename = Path(url.rsplit('/', 1)[1])
output_path = output_folder / filename
if output_path.exists() and not args.clean:
# Check if the file has already been downloaded completely
r = requests.get(url, stream=True)
total_size = int(r.headers.get('content-length', 0))
if output_path.stat().st_size >= total_size:
return
# Otherwise, resume the download from where it left off
headers = {'Range': f'bytes={output_path.stat().st_size}-'}
mode = 'ab'
else:
headers = {}
mode = 'wb'
r = requests.get(url, stream=True, headers=headers)
with open(output_path, mode) as f:
2023-01-06 17:57:31 -05:00
total_size = int(r.headers.get('content-length', 0))
block_size = 1024
with tqdm.tqdm(total=total_size, unit='iB', unit_scale=True, bar_format='{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}') as t:
for data in r.iter_content(block_size):
t.update(len(data))
f.write(data)
2023-01-06 17:57:31 -05:00
def sanitize_branch_name(branch_name):
pattern = re.compile(r"^[a-zA-Z0-9._-]+$")
if pattern.match(branch_name):
return branch_name
else:
raise ValueError("Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.")
def select_model_from_default_options():
models = {
"Pygmalion 6B original": ("PygmalionAI", "pygmalion-6b", "b8344bb4eb76a437797ad3b19420a13922aaabe1"),
"Pygmalion 6B main": ("PygmalionAI", "pygmalion-6b", "main"),
"Pygmalion 6B dev": ("PygmalionAI", "pygmalion-6b", "dev"),
"Pygmalion 2.7B": ("PygmalionAI", "pygmalion-2.7b", "main"),
"Pygmalion 1.3B": ("PygmalionAI", "pygmalion-1.3b", "main"),
"Pygmalion 350m": ("PygmalionAI", "pygmalion-350m", "main"),
"OPT 6.7b": ("facebook", "opt-6.7b", "main"),
"OPT 2.7b": ("facebook", "opt-2.7b", "main"),
"OPT 1.3b": ("facebook", "opt-1.3b", "main"),
"OPT 350m": ("facebook", "opt-350m", "main"),
}
choices = {}
print("Select the model that you want to download:\n")
for i,name in enumerate(models):
char = chr(ord('A')+i)
choices[char] = name
print(f"{char}) {name}")
char = chr(ord('A')+len(models))
print(f"{char}) None of the above")
print()
print("Input> ", end='')
choice = input()[0].strip().upper()
if choice == char:
print("""\nThen type the name of your desired Hugging Face model in the format organization/name.
Examples:
PygmalionAI/pygmalion-6b
facebook/opt-1.3b
""")
print("Input> ", end='')
model = input()
branch = "main"
else:
arr = models[choices[choice]]
model = f"{arr[0]}/{arr[1]}"
branch = arr[2]
return model, branch
def get_download_links_from_huggingface(model, branch):
base = "https://huggingface.co"
page = f"/api/models/{model}/tree/{branch}?cursor="
cursor = b""
links = []
sha256 = []
classifications = []
has_pytorch = False
has_pt = False
2023-03-31 16:33:10 -04:00
has_ggml = False
has_safetensors = False
2023-03-16 20:31:39 -04:00
is_lora = False
while True:
content = requests.get(f"{base}{page}{cursor.decode()}").content
dict = json.loads(content)
if len(dict) == 0:
break
2023-03-02 12:05:21 -05:00
for i in range(len(dict)):
fname = dict[i]['path']
2023-03-16 20:31:39 -04:00
if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')):
is_lora = True
2023-03-16 20:31:39 -04:00
is_pytorch = re.match("(pytorch|adapter)_model.*\.bin", fname)
is_safetensors = re.match(".*\.safetensors", fname)
is_pt = re.match(".*\.pt", fname)
2023-03-31 16:57:31 -04:00
is_ggml = re.match("ggml.*\.bin", fname)
2023-03-09 22:08:09 -05:00
is_tokenizer = re.match("tokenizer.*\.model", fname)
2023-03-26 13:41:14 -04:00
is_text = re.match(".*\.(txt|json|py|md)", fname) or is_tokenizer
if any((is_pytorch, is_safetensors, is_pt, is_tokenizer, is_text)):
if 'lfs' in dict[i]:
sha256.append([fname, dict[i]['lfs']['oid']])
if is_text:
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
classifications.append('text')
continue
if not args.text_only:
links.append(f"https://huggingface.co/{model}/resolve/{branch}/{fname}")
if is_safetensors:
has_safetensors = True
classifications.append('safetensors')
elif is_pytorch:
has_pytorch = True
classifications.append('pytorch')
elif is_pt:
has_pt = True
classifications.append('pt')
2023-03-31 16:33:10 -04:00
elif is_ggml:
has_ggml = True
classifications.append('ggml')
2023-03-16 20:31:39 -04:00
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50'
cursor = base64.b64encode(cursor)
cursor = cursor.replace(b'=', b'%3D')
# If both pytorch and safetensors are available, download safetensors only
if (has_pytorch or has_pt) and has_safetensors:
for i in range(len(classifications)-1, -1, -1):
if classifications[i] in ['pytorch', 'pt']:
links.pop(i)
return links, sha256, is_lora
def download_files(file_list, output_folder, num_threads=8):
thread_map(lambda url: get_file(url, output_folder), file_list, max_workers=num_threads, disable=True)
if __name__ == '__main__':
model = args.MODEL
branch = args.branch
if model is None:
model, branch = select_model_from_default_options()
else:
if model[-1] == '/':
model = model[:-1]
branch = args.branch
if branch is None:
branch = "main"
else:
try:
branch = sanitize_branch_name(branch)
except ValueError as err_branch:
print(f"Error: {err_branch}")
sys.exit()
2023-03-16 20:31:39 -04:00
links, sha256, is_lora = get_download_links_from_huggingface(model, branch)
if args.output is not None:
base_folder = args.output
else:
base_folder = 'models' if not is_lora else 'loras'
output_folder = f"{'_'.join(model.split('/')[-2:])}"
if branch != 'main':
output_folder += f'_{branch}'
output_folder = Path(base_folder) / output_folder
if args.check:
# Validate the checksums
validated = True
for i in range(len(sha256)):
2023-03-31 00:31:47 -04:00
fpath = (output_folder / sha256[i][0])
if not fpath.exists():
print(f"The following file is missing: {fpath}")
validated = False
continue
with open(output_folder / sha256[i][0], "rb") as f:
bytes = f.read()
file_hash = hashlib.sha256(bytes).hexdigest()
if file_hash != sha256[i][1]:
2023-03-31 00:31:47 -04:00
print(f'Checksum failed: {sha256[i][0]} {sha256[i][1]}')
validated = False
2023-03-31 00:31:47 -04:00
else:
print(f'Checksum validated: {sha256[i][0]} {sha256[i][1]}')
if validated:
print('[+] Validated checksums of all model files!')
else:
2023-03-31 00:31:47 -04:00
print('[-] Invalid checksums. Rerun download-model.py with the --clean flag.')
2023-03-31 00:31:47 -04:00
else:
# Creating the folder and writing the metadata
if not output_folder.exists():
output_folder.mkdir()
with open(output_folder / 'huggingface-metadata.txt', 'w') as f:
f.write(f'url: https://huggingface.co/{model}\n')
f.write(f'branch: {branch}\n')
f.write(f'download date: {str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"))}\n')
sha256_str = ''
for i in range(len(sha256)):
sha256_str += f' {sha256[i][1]} {sha256[i][0]}\n'
if sha256_str != '':
f.write(f'sha256sum:\n{sha256_str}')
2023-03-31 00:31:47 -04:00
# Downloading the files
print(f"Downloading the model to {output_folder}")
download_files(links, output_folder, args.threads)