text-generation-webui/modules/exllamav2.py

160 lines
5.8 KiB
Python
Raw Normal View History

import random
import traceback
from pathlib import Path
import torch
from exllamav2 import (
ExLlamaV2,
ExLlamaV2Cache,
2023-11-02 14:23:04 -04:00
ExLlamaV2Cache_8bit,
ExLlamaV2Config,
ExLlamaV2Tokenizer
)
from exllamav2.generator import ExLlamaV2BaseGenerator, ExLlamaV2Sampler
from modules import shared
2023-09-18 19:26:54 -04:00
from modules.logging_colors import logger
from modules.text_generation import get_max_prompt_length
try:
import flash_attn
except ModuleNotFoundError:
logger.warning(
'You are running ExLlamaV2 without flash-attention. This will cause the VRAM usage '
'to be a lot higher than it could be.\n'
'Try installing flash-attention following the instructions here: '
'https://github.com/Dao-AILab/flash-attention#installation-and-features'
)
pass
except Exception:
logger.warning('Failed to load flash-attention due to the following error:\n')
traceback.print_exc()
class Exllamav2Model:
def __init__(self):
pass
@classmethod
def from_pretrained(self, path_to_model):
path_to_model = Path(f'{shared.args.model_dir}') / Path(path_to_model)
config = ExLlamaV2Config()
2023-09-12 20:42:22 -04:00
config.model_dir = str(path_to_model)
config.prepare()
config.max_seq_len = shared.args.max_seq_len
config.scale_pos_emb = shared.args.compress_pos_emb
config.scale_alpha_value = shared.args.alpha_value
2023-11-02 11:19:42 -04:00
config.no_flash_attn = shared.args.no_flash_attn
2023-09-15 17:27:27 -04:00
model = ExLlamaV2(config)
split = None
if shared.args.gpu_split:
split = [float(alloc) for alloc in shared.args.gpu_split.split(",")]
model.load(split)
tokenizer = ExLlamaV2Tokenizer(config)
2023-11-02 14:23:04 -04:00
if shared.args.cache_8bit:
cache = ExLlamaV2Cache_8bit(model)
else:
cache = ExLlamaV2Cache(model)
generator = ExLlamaV2BaseGenerator(model, cache, tokenizer)
result = self()
result.model = model
result.cache = cache
result.tokenizer = tokenizer
result.generator = generator
result.loras = None
return result, result
2023-09-19 16:13:03 -04:00
def encode(self, string, **kwargs):
return self.tokenizer.encode(string, add_bos=True, encode_special_tokens=True)
2023-09-19 16:13:03 -04:00
def decode(self, ids, **kwargs):
if isinstance(ids, list):
ids = torch.tensor([ids])
elif isinstance(ids, torch.Tensor) and ids.numel() == 1:
ids = ids.view(1, -1)
return self.tokenizer.decode(ids, decode_special_tokens=True)[0]
2023-09-19 16:13:03 -04:00
def get_logits(self, token_ids, **kwargs):
self.cache.current_seq_len = 0
if token_ids.shape[-1] > 1:
self.model.forward(token_ids[:, :-1], self.cache, input_mask=None, preprocess_only=True, loras=self.loras)
return self.model.forward(token_ids[:, -1:], self.cache, input_mask=None, loras=self.loras, **kwargs).float().cpu()
2023-09-19 16:13:03 -04:00
def generate_with_streaming(self, prompt, state):
settings = ExLlamaV2Sampler.Settings()
settings.temperature = state['temperature']
settings.top_k = state['top_k']
settings.top_p = state['top_p']
2023-11-16 10:09:40 -05:00
settings.min_p = state['min_p']
settings.tfs = state['tfs']
2023-09-28 22:59:52 -04:00
settings.typical = state['typical_p']
2023-11-16 10:09:40 -05:00
settings.mirostat = state['mirostat_mode'] == 2
settings.mirostat_tau = state['mirostat_tau']
settings.mirostat_eta = state['mirostat_eta']
settings.token_repetition_penalty = state['repetition_penalty']
settings.token_repetition_range = -1 if state['repetition_penalty_range'] <= 0 else state['repetition_penalty_range']
if state['ban_eos_token']:
settings.disallow_tokens(self.tokenizer, [self.tokenizer.eos_token_id])
2023-09-15 17:27:27 -04:00
if state['custom_token_bans']:
to_ban = [int(x) for x in state['custom_token_bans'].split(',')]
if len(to_ban) > 0:
settings.disallow_tokens(self.tokenizer, to_ban)
ids = self.tokenizer.encode(prompt, add_bos=state['add_bos_token'], encode_special_tokens=True)
ids = ids[:, -get_max_prompt_length(state):]
initial_len = ids.shape[-1]
if state['auto_max_new_tokens']:
max_new_tokens = state['truncation_length'] - ids.shape[-1]
else:
max_new_tokens = state['max_new_tokens']
# _gen_begin_base
self.cache.current_seq_len = 0
self.model.forward(ids[:, :-1], self.cache, input_mask=None, preprocess_only=True, loras=self.loras)
has_leading_space = False
for i in range(max_new_tokens):
logits = self.model.forward(ids[:, -1:], self.cache, input_mask=None, loras=self.loras).float().cpu()
token, _, _ = ExLlamaV2Sampler.sample(logits, settings, ids, random.random(), self.tokenizer)
ids = torch.cat([ids, token], dim=1)
if i == 0 and self.tokenizer.tokenizer.id_to_piece(int(token)).startswith(''):
has_leading_space = True
decoded_text = self.tokenizer.decode(ids[:, initial_len:], decode_special_tokens=not state['skip_special_tokens'])[0]
if has_leading_space:
decoded_text = ' ' + decoded_text
# Check the partial unicode character
if chr(0xfffd) in decoded_text:
is_last = i == max_new_tokens - 1
is_stopping = token.item() == self.tokenizer.eos_token_id or shared.stop_everything
# If we are not at the end of the generation, we skip this token
if not (is_last or is_stopping):
continue
if token.item() == self.tokenizer.eos_token_id or shared.stop_everything:
break
yield decoded_text
def generate(self, prompt, state):
output = ''
for output in self.generate_with_streaming(prompt, state):
pass
return output