2023-03-16 20:35:53 -04:00
|
|
|
from pathlib import Path
|
|
|
|
|
2023-03-25 00:18:32 -04:00
|
|
|
import torch
|
2023-03-29 21:50:58 -04:00
|
|
|
from peft import PeftModel
|
2023-03-25 00:18:32 -04:00
|
|
|
|
2023-03-16 20:35:53 -04:00
|
|
|
import modules.shared as shared
|
2023-03-23 20:56:26 -04:00
|
|
|
|
2023-04-06 23:15:45 -04:00
|
|
|
|
2023-04-14 13:52:06 -04:00
|
|
|
def add_lora_to_model(lora_names):
|
|
|
|
prior_set = set(shared.lora_names)
|
|
|
|
added_set = set(lora_names) - prior_set
|
|
|
|
removed_set = prior_set - set(lora_names)
|
|
|
|
shared.lora_names = list(lora_names)
|
2023-03-16 20:35:53 -04:00
|
|
|
|
2023-04-14 13:52:06 -04:00
|
|
|
# Nothing to do = skip.
|
|
|
|
if len(added_set) == 0 and len(removed_set) == 0:
|
|
|
|
return
|
2023-03-23 20:56:26 -04:00
|
|
|
|
2023-04-14 13:52:06 -04:00
|
|
|
# Only adding, and already peft? Do it the easy way.
|
|
|
|
if len(removed_set) == 0 and len(prior_set) > 0:
|
|
|
|
print(f"Adding the LoRA(s) named {added_set} to the model...")
|
|
|
|
for lora in added_set:
|
|
|
|
shared.model.load_adapter(Path(f"{shared.args.lora_dir}/{lora}"), lora)
|
|
|
|
return
|
|
|
|
|
|
|
|
# If removing anything, disable all and re-add.
|
|
|
|
if len(removed_set) > 0:
|
|
|
|
shared.model.disable_adapter()
|
|
|
|
|
|
|
|
if len(lora_names) > 0:
|
|
|
|
print("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join(lora_names)))
|
2023-03-17 16:45:28 -04:00
|
|
|
params = {}
|
2023-03-23 15:49:41 -04:00
|
|
|
if not shared.args.cpu:
|
2023-03-22 23:55:33 -04:00
|
|
|
params['dtype'] = shared.model.dtype
|
2023-03-23 15:49:41 -04:00
|
|
|
if hasattr(shared.model, "hf_device_map"):
|
2023-04-06 23:15:45 -04:00
|
|
|
params['device_map'] = {"base_model.model." + k: v for k, v in shared.model.hf_device_map.items()}
|
2023-03-23 15:49:41 -04:00
|
|
|
elif shared.args.load_in_8bit:
|
|
|
|
params['device_map'] = {'': 0}
|
2023-04-06 23:15:45 -04:00
|
|
|
|
2023-04-14 13:52:06 -04:00
|
|
|
shared.model = PeftModel.from_pretrained(shared.model, Path(f"{shared.args.lora_dir}/{lora_names[0]}"), **params)
|
|
|
|
|
|
|
|
for lora in lora_names[1:]:
|
|
|
|
shared.model.load_adapter(Path(f"{shared.args.lora_dir}/{lora}"), lora)
|
|
|
|
|
2023-03-23 00:05:13 -04:00
|
|
|
if not shared.args.load_in_8bit and not shared.args.cpu:
|
2023-04-16 22:26:52 -04:00
|
|
|
if not shared.args.monkey_patch:
|
|
|
|
shared.model.half()
|
2023-03-23 15:49:41 -04:00
|
|
|
if not hasattr(shared.model, "hf_device_map"):
|
2023-03-25 00:18:32 -04:00
|
|
|
if torch.has_mps:
|
|
|
|
device = torch.device('mps')
|
|
|
|
shared.model = shared.model.to(device)
|
|
|
|
else:
|
|
|
|
shared.model = shared.model.cuda()
|