mirror of
https://github.com/tatsu-lab/stanford_alpaca.git
synced 2024-10-01 05:35:37 -04:00
158 lines
5.9 KiB
Python
158 lines
5.9 KiB
Python
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import Optional
|
|
|
|
import fire
|
|
import torch
|
|
import tqdm
|
|
import transformers
|
|
from train import smart_tokenizer_and_embedding_resize
|
|
|
|
|
|
@torch.inference_mode()
|
|
def make_diff(
|
|
path_raw: str, path_tuned: str, path_diff: str, device="cpu", # "cuda" or "cpu"
|
|
):
|
|
"""Make the weight diff.
|
|
|
|
This function is given to present full transparency of how the weight diff was created.
|
|
|
|
Run:
|
|
python weight_diff.py make_diff --path_raw <your_path_raw> --path_tuned <your_path_tuned> --path_diff <your_path_diff>
|
|
"""
|
|
model_tuned: transformers.PreTrainedModel = transformers.AutoModelForCausalLM.from_pretrained(
|
|
path_tuned,
|
|
device_map={"": torch.device(device)},
|
|
torch_dtype=torch.float32,
|
|
low_cpu_mem_usage=True,
|
|
)
|
|
model_raw: transformers.PreTrainedModel = transformers.AutoModelForCausalLM.from_pretrained(
|
|
path_raw,
|
|
device_map={"": torch.device(device)},
|
|
torch_dtype=torch.float32,
|
|
low_cpu_mem_usage=True,
|
|
)
|
|
|
|
tokenizer_tuned: transformers.PreTrainedTokenizer = transformers.AutoTokenizer.from_pretrained(
|
|
path_tuned
|
|
)
|
|
tokenizer_raw: transformers.PreTrainedTokenizer = transformers.AutoTokenizer.from_pretrained(
|
|
path_raw
|
|
)
|
|
if tokenizer_raw.pad_token is None:
|
|
smart_tokenizer_and_embedding_resize(
|
|
special_tokens_dict=dict(pad_token="[PAD]"),
|
|
model=model_raw,
|
|
tokenizer=tokenizer_raw,
|
|
)
|
|
|
|
state_dict_tuned = model_tuned.state_dict()
|
|
state_dict_raw = model_raw.state_dict()
|
|
for key in tqdm.tqdm(state_dict_tuned):
|
|
state_dict_tuned[key].add_(-state_dict_raw[key])
|
|
|
|
model_tuned.save_pretrained(path_diff)
|
|
tokenizer_tuned.save_pretrained(path_diff)
|
|
|
|
|
|
@torch.inference_mode()
|
|
def recover(
|
|
path_raw,
|
|
path_diff,
|
|
path_tuned: Optional[str] = None,
|
|
device="cpu",
|
|
test_inference=True,
|
|
check_integrity_naively=True,
|
|
):
|
|
"""Recover the original weights from the released weight diff.
|
|
|
|
This function is given for you to run.
|
|
|
|
Things to do before running this:
|
|
1. Convert Meta's released weights into huggingface format. Follow this guide:
|
|
https://huggingface.co/docs/transformers/main/model_doc/llama
|
|
2. Make sure you cloned the released weight diff into your local machine. The weight diff is located at:
|
|
https://huggingface.co/tatsu-lab/alpaca-7b/tree/main
|
|
3. Run this function with the correct paths. E.g.,
|
|
python weight_diff.py recover --path_raw <path_to_step_1_dir> --path_diff <path_to_step_2_dir>
|
|
|
|
Additional notes:
|
|
- If things run too slowly, and you have an 80G GPU lying around, let GPU go brrr by setting `--device "cuda"`.
|
|
- If you want to save the recovered weights, set `--path_tuned <your_path_tuned>`.
|
|
Next time you can load the recovered weights directly from `<your_path_tuned>`.
|
|
"""
|
|
model_raw: transformers.PreTrainedModel = transformers.AutoModelForCausalLM.from_pretrained(
|
|
path_raw,
|
|
device_map={"": torch.device(device)},
|
|
torch_dtype=torch.float32,
|
|
low_cpu_mem_usage=True,
|
|
)
|
|
model_recovered: transformers.PreTrainedModel = transformers.AutoModelForCausalLM.from_pretrained(
|
|
path_diff,
|
|
device_map={"": torch.device(device)},
|
|
torch_dtype=torch.float32,
|
|
low_cpu_mem_usage=True,
|
|
)
|
|
|
|
tokenizer_raw: transformers.PreTrainedTokenizer = transformers.AutoTokenizer.from_pretrained(
|
|
path_raw
|
|
)
|
|
if tokenizer_raw.pad_token is None:
|
|
smart_tokenizer_and_embedding_resize(
|
|
special_tokens_dict=dict(pad_token="[PAD]"),
|
|
model=model_raw,
|
|
tokenizer=tokenizer_raw,
|
|
)
|
|
tokenizer_recovered: transformers.PreTrainedTokenizer = transformers.AutoTokenizer.from_pretrained(
|
|
path_diff
|
|
)
|
|
|
|
state_dict_recovered = model_recovered.state_dict()
|
|
state_dict_raw = model_raw.state_dict()
|
|
for key in tqdm.tqdm(state_dict_recovered):
|
|
state_dict_recovered[key].add_(state_dict_raw[key])
|
|
|
|
if check_integrity_naively:
|
|
# This is not a rigorous, cryptographically strong integrity check :)
|
|
allsum = sum(state_dict_recovered[key].sum() for key in state_dict_recovered)
|
|
assert torch.allclose(
|
|
allsum, torch.full_like(allsum, fill_value=50637.1836), atol=1e-2, rtol=0
|
|
), "Naive integrity check failed. This could imply that some of the checkpoint files are corrupted."
|
|
|
|
if path_tuned is not None:
|
|
model_recovered.save_pretrained(path_tuned)
|
|
|
|
if test_inference:
|
|
input_text = (
|
|
"Below is an instruction that describes a task. "
|
|
"Write a response that appropriately completes the request.\r\n\r\n"
|
|
"### Instruction:\r\nList three technologies that make life easier.\r\n\r\n### Response:"
|
|
)
|
|
inputs = tokenizer_recovered(input_text, return_tensors="pt")
|
|
out = model_recovered.generate(inputs=inputs.input_ids, max_new_tokens=100)
|
|
output_text = tokenizer_recovered.batch_decode(out, skip_special_tokens=True)[0]
|
|
output_text = output_text[len(input_text) :]
|
|
print(f"Input: {input_text}\nCompletion: {output_text}")
|
|
|
|
return model_recovered, tokenizer_recovered
|
|
|
|
|
|
def main(task, **kwargs):
|
|
globals()[task](**kwargs)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(main)
|