mirror of
https://github.com/tatsu-lab/stanford_alpaca.git
synced 2024-10-01 05:35:37 -04:00
223 lines
8.1 KiB
Python
223 lines
8.1 KiB
Python
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import logging
|
|
from dataclasses import dataclass, field
|
|
from typing import Dict, Optional, Sequence
|
|
|
|
import torch
|
|
import transformers
|
|
import utils
|
|
from torch.utils.data import Dataset
|
|
from transformers import Trainer
|
|
|
|
IGNORE_INDEX = -100
|
|
DEFAULT_PAD_TOKEN = "[PAD]"
|
|
DEFAULT_EOS_TOKEN = "</s>"
|
|
DEFAULT_BOS_TOKEN = "<s>"
|
|
DEFAULT_UNK_TOKEN = "<unk>"
|
|
PROMPT_DICT = {
|
|
"prompt_input": (
|
|
"Below is an instruction that describes a task, paired with an input that provides further context. "
|
|
"Write a response that appropriately completes the request.\n\n"
|
|
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
|
|
),
|
|
"prompt_no_input": (
|
|
"Below is an instruction that describes a task. "
|
|
"Write a response that appropriately completes the request.\n\n"
|
|
"### Instruction:\n{instruction}\n\n### Response:"
|
|
),
|
|
}
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
|
|
|
|
|
|
@dataclass
|
|
class DataArguments:
|
|
data_path: str = field(default=None, metadata={"help": "Path to the training data."})
|
|
|
|
|
|
@dataclass
|
|
class TrainingArguments(transformers.TrainingArguments):
|
|
cache_dir: Optional[str] = field(default=None)
|
|
optim: str = field(default="adamw_torch")
|
|
model_max_length: int = field(
|
|
default=512,
|
|
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
|
|
)
|
|
|
|
|
|
def smart_tokenizer_and_embedding_resize(
|
|
special_tokens_dict: Dict,
|
|
tokenizer: transformers.PreTrainedTokenizer,
|
|
model: transformers.PreTrainedModel,
|
|
):
|
|
"""Resize tokenizer and embedding.
|
|
|
|
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
|
|
"""
|
|
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
|
|
model.resize_token_embeddings(len(tokenizer))
|
|
|
|
if num_new_tokens > 0:
|
|
input_embeddings = model.get_input_embeddings().weight.data
|
|
output_embeddings = model.get_output_embeddings().weight.data
|
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
|
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
|
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
|
|
|
|
|
def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict:
|
|
"""Tokenize a list of strings."""
|
|
tokenized_list = [
|
|
tokenizer(
|
|
text,
|
|
return_tensors="pt",
|
|
padding="longest",
|
|
max_length=tokenizer.model_max_length,
|
|
truncation=True,
|
|
)
|
|
for text in strings
|
|
]
|
|
input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
|
|
input_ids_lens = labels_lens = [
|
|
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list
|
|
]
|
|
return dict(
|
|
input_ids=input_ids,
|
|
labels=labels,
|
|
input_ids_lens=input_ids_lens,
|
|
labels_lens=labels_lens,
|
|
)
|
|
|
|
|
|
def preprocess(
|
|
sources: Sequence[str],
|
|
targets: Sequence[str],
|
|
tokenizer: transformers.PreTrainedTokenizer,
|
|
) -> Dict:
|
|
"""Preprocess the data by tokenizing."""
|
|
examples = [s + t for s, t in zip(sources, targets)]
|
|
examples_tokenized, sources_tokenized = [_tokenize_fn(strings, tokenizer) for strings in (examples, sources)]
|
|
input_ids = examples_tokenized["input_ids"]
|
|
labels = copy.deepcopy(input_ids)
|
|
for label, source_len in zip(labels, sources_tokenized["input_ids_lens"]):
|
|
label[:source_len] = IGNORE_INDEX
|
|
return dict(input_ids=input_ids, labels=labels)
|
|
|
|
|
|
class SupervisedDataset(Dataset):
|
|
"""Dataset for supervised fine-tuning."""
|
|
|
|
def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer):
|
|
super(SupervisedDataset, self).__init__()
|
|
logging.warning("Loading data...")
|
|
list_data_dict = utils.jload(data_path)
|
|
|
|
logging.warning("Formatting inputs...")
|
|
prompt_input, prompt_no_input = PROMPT_DICT["prompt_input"], PROMPT_DICT["prompt_no_input"]
|
|
sources = [
|
|
prompt_input.format_map(example) if example.get("input", "") != "" else prompt_no_input.format_map(example)
|
|
for example in list_data_dict
|
|
]
|
|
targets = [f"{example['output']}{tokenizer.eos_token}" for example in list_data_dict]
|
|
|
|
logging.warning("Tokenizing inputs... This may take some time...")
|
|
data_dict = preprocess(sources, targets, tokenizer)
|
|
|
|
self.input_ids = data_dict["input_ids"]
|
|
self.labels = data_dict["labels"]
|
|
|
|
def __len__(self):
|
|
return len(self.input_ids)
|
|
|
|
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
|
return dict(input_ids=self.input_ids[i], labels=self.labels[i])
|
|
|
|
|
|
@dataclass
|
|
class DataCollatorForSupervisedDataset(object):
|
|
"""Collate examples for supervised fine-tuning."""
|
|
|
|
tokenizer: transformers.PreTrainedTokenizer
|
|
|
|
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
|
|
input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))
|
|
input_ids = torch.nn.utils.rnn.pad_sequence(
|
|
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
|
|
)
|
|
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
|
|
return dict(
|
|
input_ids=input_ids,
|
|
labels=labels,
|
|
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
|
|
)
|
|
|
|
|
|
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args) -> Dict:
|
|
"""Make dataset and collator for supervised fine-tuning."""
|
|
train_dataset = SupervisedDataset(tokenizer=tokenizer, data_path=data_args.data_path)
|
|
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
|
|
return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator)
|
|
|
|
|
|
def train():
|
|
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
model = transformers.AutoModelForCausalLM.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
cache_dir=training_args.cache_dir,
|
|
)
|
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
cache_dir=training_args.cache_dir,
|
|
model_max_length=training_args.model_max_length,
|
|
padding_side="right",
|
|
use_fast=False,
|
|
)
|
|
special_tokens_dict = dict()
|
|
if tokenizer.pad_token is None:
|
|
special_tokens_dict["pad_token"] = DEFAULT_PAD_TOKEN
|
|
if tokenizer.eos_token is None:
|
|
special_tokens_dict["eos_token"] = DEFAULT_EOS_TOKEN
|
|
if tokenizer.bos_token is None:
|
|
special_tokens_dict["bos_token"] = DEFAULT_BOS_TOKEN
|
|
if tokenizer.unk_token is None:
|
|
special_tokens_dict["unk_token"] = DEFAULT_UNK_TOKEN
|
|
|
|
smart_tokenizer_and_embedding_resize(
|
|
special_tokens_dict=special_tokens_dict,
|
|
tokenizer=tokenizer,
|
|
model=model,
|
|
)
|
|
|
|
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
|
|
trainer = Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)
|
|
trainer.train()
|
|
trainer.save_state()
|
|
trainer.save_model(output_dir=training_args.output_dir)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
train()
|