# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import fire import torch import tqdm import transformers from train import smart_tokenizer_and_embedding_resize @torch.inference_mode() def make_diff( path_raw: str, path_tuned: str, path_diff: str, device="cpu", # "cuda" or "cpu" ): """Make the weight diff. This function is given to present full transparency of how the weight diff was created. Run: python weight_diff.py make_diff --path_raw --path_tuned --path_diff """ model_tuned: transformers.PreTrainedModel = transformers.AutoModelForCausalLM.from_pretrained( path_tuned, device_map={"": torch.device(device)}, torch_dtype=torch.float32, low_cpu_mem_usage=True, ) model_raw: transformers.PreTrainedModel = transformers.AutoModelForCausalLM.from_pretrained( path_raw, device_map={"": torch.device(device)}, torch_dtype=torch.float32, low_cpu_mem_usage=True, ) tokenizer_tuned: transformers.PreTrainedTokenizer = transformers.AutoTokenizer.from_pretrained( path_tuned ) tokenizer_raw: transformers.PreTrainedTokenizer = transformers.AutoTokenizer.from_pretrained( path_raw ) if tokenizer_raw.pad_token is None: smart_tokenizer_and_embedding_resize( special_tokens_dict=dict(pad_token="[PAD]"), model=model_raw, tokenizer=tokenizer_raw, ) state_dict_tuned = model_tuned.state_dict() state_dict_raw = model_raw.state_dict() for key in tqdm.tqdm(state_dict_tuned): state_dict_tuned[key].add_(-state_dict_raw[key]) model_tuned.save_pretrained(path_diff) tokenizer_tuned.save_pretrained(path_diff) @torch.inference_mode() def recover( path_raw, path_diff, path_tuned: Optional[str] = None, device="cpu", test_inference=True, check_integrity_naively=True, ): """Recover the original weights from the released weight diff. This function is given for you to run. Things to do before running this: 1. Convert Meta's released weights into huggingface format. Follow this guide: https://huggingface.co/docs/transformers/main/model_doc/llama 2. Make sure you cloned the released weight diff into your local machine. The weight diff is located at: https://huggingface.co/tatsu-lab/alpaca-7b/tree/main 3. Run this function with the correct paths. E.g., python weight_diff.py recover --path_raw --path_diff Additional notes: - If things run too slowly, and you have an 80G GPU lying around, let GPU go brrr by setting `--device "cuda"`. - If you want to save the recovered weights, set `--path_tuned `. Next time you can load the recovered weights directly from ``. """ model_raw: transformers.PreTrainedModel = transformers.AutoModelForCausalLM.from_pretrained( path_raw, device_map={"": torch.device(device)}, torch_dtype=torch.float32, low_cpu_mem_usage=True, ) model_recovered: transformers.PreTrainedModel = transformers.AutoModelForCausalLM.from_pretrained( path_diff, device_map={"": torch.device(device)}, torch_dtype=torch.float32, low_cpu_mem_usage=True, ) tokenizer_raw: transformers.PreTrainedTokenizer = transformers.AutoTokenizer.from_pretrained( path_raw ) if tokenizer_raw.pad_token is None: smart_tokenizer_and_embedding_resize( special_tokens_dict=dict(pad_token="[PAD]"), model=model_raw, tokenizer=tokenizer_raw, ) tokenizer_recovered: transformers.PreTrainedTokenizer = transformers.AutoTokenizer.from_pretrained( path_diff ) state_dict_recovered = model_recovered.state_dict() state_dict_raw = model_raw.state_dict() for key in tqdm.tqdm(state_dict_recovered): state_dict_recovered[key].add_(state_dict_raw[key]) if check_integrity_naively: # This is not a rigorous, cryptographically strong integrity check :) allsum = sum(state_dict_recovered[key].sum() for key in state_dict_recovered) assert torch.allclose( allsum, torch.full_like(allsum, fill_value=50637.1836), atol=1e-2, rtol=0 ), "Naive integrity check failed. This could imply that some of the checkpoint files are corrupted." if path_tuned is not None: model_recovered.save_pretrained(path_tuned) if test_inference: input_text = ( "Below is an instruction that describes a task. " "Write a response that appropriately completes the request.\r\n\r\n" "### Instruction:\r\nList three technologies that make life easier.\r\n\r\n### Response:" ) inputs = tokenizer_recovered(input_text, return_tensors="pt") out = model_recovered.generate(inputs=inputs.input_ids, max_new_tokens=100) output_text = tokenizer_recovered.batch_decode(out, skip_special_tokens=True)[0] output_text = output_text[len(input_text) :] print(f"Input: {input_text}\nCompletion: {output_text}") return model_recovered, tokenizer_recovered def main(task, **kwargs): globals()[task](**kwargs) if __name__ == "__main__": fire.Fire(main)