mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2024-10-01 01:06:10 -04:00
161 lines
6.3 KiB
C++
161 lines
6.3 KiB
C++
#include "llmodel.h"
|
|
|
|
#include <cassert>
|
|
#include <iostream>
|
|
#include <unordered_set>
|
|
|
|
void LLModel::recalculateContext(PromptContext &promptCtx, std::function<bool(bool)> recalculate) {
|
|
size_t i = 0;
|
|
promptCtx.n_past = 0;
|
|
while (i < promptCtx.tokens.size()) {
|
|
size_t batch_end = std::min(i + promptCtx.n_batch, promptCtx.tokens.size());
|
|
std::vector<int32_t> batch(promptCtx.tokens.begin() + i, promptCtx.tokens.begin() + batch_end);
|
|
assert(promptCtx.n_past + int32_t(batch.size()) <= promptCtx.n_ctx);
|
|
if (!evalTokens(promptCtx, batch)) {
|
|
std::cerr << "LLModel ERROR: Failed to process prompt\n";
|
|
goto stop_generating;
|
|
}
|
|
promptCtx.n_past += batch.size();
|
|
if (!recalculate(true))
|
|
goto stop_generating;
|
|
i = batch_end;
|
|
}
|
|
assert(promptCtx.n_past == int32_t(promptCtx.tokens.size()));
|
|
|
|
stop_generating:
|
|
recalculate(false);
|
|
}
|
|
|
|
void LLModel::prompt(const std::string &prompt,
|
|
std::function<bool(int32_t)> promptCallback,
|
|
std::function<bool(int32_t, const std::string&)> responseCallback,
|
|
std::function<bool(bool)> recalculateCallback,
|
|
PromptContext &promptCtx)
|
|
{
|
|
if (!isModelLoaded()) {
|
|
std::cerr << implementation().modelType << " ERROR: prompt won't work with an unloaded model!\n";
|
|
return;
|
|
}
|
|
|
|
// tokenize the prompt
|
|
std::vector<Token> embd_inp = tokenize(promptCtx, prompt);
|
|
|
|
// save the context size
|
|
promptCtx.n_ctx = contextLength();
|
|
|
|
if ((int) embd_inp.size() > promptCtx.n_ctx - 4) {
|
|
responseCallback(-1, "ERROR: The prompt size exceeds the context window size and cannot be processed.");
|
|
std::cerr << implementation().modelType << " ERROR: The prompt is" << embd_inp.size() <<
|
|
"tokens and the context window is" << promptCtx.n_ctx << "!\n";
|
|
return;
|
|
}
|
|
|
|
promptCtx.n_predict = std::min(promptCtx.n_predict, promptCtx.n_ctx - (int) embd_inp.size());
|
|
promptCtx.n_past = std::min(promptCtx.n_past, promptCtx.n_ctx);
|
|
promptCtx.n_batch = std::min(promptCtx.n_batch, LLMODEL_MAX_PROMPT_BATCH);
|
|
|
|
// process the prompt in batches
|
|
size_t i = 0;
|
|
while (i < embd_inp.size()) {
|
|
size_t batch_end = std::min(i + promptCtx.n_batch, embd_inp.size());
|
|
std::vector<Token> batch(embd_inp.begin() + i, embd_inp.begin() + batch_end);
|
|
|
|
// Check if the context has run out...
|
|
if (promptCtx.n_past + int32_t(batch.size()) > promptCtx.n_ctx) {
|
|
const int32_t erasePoint = promptCtx.n_ctx * promptCtx.contextErase;
|
|
// Erase the first percentage of context from the tokens...
|
|
std::cerr << implementation().modelType << ": reached the end of the context window so resizing\n";
|
|
promptCtx.tokens.erase(promptCtx.tokens.begin(), promptCtx.tokens.begin() + erasePoint);
|
|
promptCtx.n_past = promptCtx.tokens.size();
|
|
recalculateContext(promptCtx, recalculateCallback);
|
|
assert(promptCtx.n_past + int32_t(batch.size()) <= promptCtx.n_ctx);
|
|
}
|
|
|
|
if (!evalTokens(promptCtx, batch)) {
|
|
std::cerr << implementation().modelType << " ERROR: Failed to process prompt\n";
|
|
return;
|
|
}
|
|
|
|
size_t tokens = batch_end - i;
|
|
for (size_t t = 0; t < tokens; ++t) {
|
|
if (int32_t(promptCtx.tokens.size()) == promptCtx.n_ctx)
|
|
promptCtx.tokens.erase(promptCtx.tokens.begin());
|
|
promptCtx.tokens.push_back(batch.at(t));
|
|
if (!promptCallback(batch.at(t)))
|
|
return;
|
|
}
|
|
promptCtx.n_past += batch.size();
|
|
i = batch_end;
|
|
}
|
|
|
|
std::string cachedResponse;
|
|
std::vector<Token> cachedTokens;
|
|
std::unordered_set<std::string> reversePrompts
|
|
= { "### Instruction", "### Prompt", "### Response", "### Human", "### Assistant", "### Context" };
|
|
|
|
// predict next tokens
|
|
for (int i = 0; i < promptCtx.n_predict; i++) {
|
|
|
|
// sample next token
|
|
auto id = sampleToken(promptCtx);
|
|
|
|
// Check if the context has run out...
|
|
if (promptCtx.n_past + 1 > promptCtx.n_ctx) {
|
|
const int32_t erasePoint = promptCtx.n_ctx * promptCtx.contextErase;
|
|
// Erase the first percentage of context from the tokens...
|
|
std::cerr << implementation().modelType << ": reached the end of the context window so resizing\n";
|
|
promptCtx.tokens.erase(promptCtx.tokens.begin(), promptCtx.tokens.begin() + erasePoint);
|
|
promptCtx.n_past = promptCtx.tokens.size();
|
|
recalculateContext(promptCtx, recalculateCallback);
|
|
assert(promptCtx.n_past + 1 <= promptCtx.n_ctx);
|
|
}
|
|
|
|
if (!evalTokens(promptCtx, { id })) {
|
|
std::cerr << implementation().modelType << " ERROR: Failed to predict next token\n";
|
|
return;
|
|
}
|
|
|
|
promptCtx.n_past += 1;
|
|
|
|
// display text
|
|
for (const auto token : endTokens()) {
|
|
if (id == token) return;
|
|
}
|
|
|
|
const std::string str = tokenToString(id);
|
|
|
|
// Check if the provided str is part of our reverse prompts
|
|
bool foundPartialReversePrompt = false;
|
|
const std::string completed = cachedResponse + std::string(str);
|
|
if (reversePrompts.find(completed) != reversePrompts.end())
|
|
return;
|
|
|
|
// Check if it partially matches our reverse prompts and if so, cache
|
|
for (const auto& s : reversePrompts) {
|
|
if (s.compare(0, completed.size(), completed) == 0) {
|
|
foundPartialReversePrompt = true;
|
|
cachedResponse = completed;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Regardless the token gets added to our cache
|
|
cachedTokens.push_back(id);
|
|
|
|
// Continue if we have found a partial match
|
|
if (foundPartialReversePrompt)
|
|
continue;
|
|
|
|
// Empty the cache
|
|
for (auto t : cachedTokens) {
|
|
if (int32_t(promptCtx.tokens.size()) == promptCtx.n_ctx)
|
|
promptCtx.tokens.erase(promptCtx.tokens.begin());
|
|
promptCtx.tokens.push_back(t);
|
|
//TODO: Conversion to std::string can be avoided here...
|
|
if (!responseCallback(t, std::string(tokenToString(t))))
|
|
return;
|
|
}
|
|
cachedTokens.clear();
|
|
}
|
|
}
|