mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2024-10-01 01:06:10 -04:00
4fc4d94be4
Also use a new version of Mistral OpenOrca. Signed-off-by: Jared Van Bortel <jared@nomic.ai>
188 lines
7.0 KiB
C++
188 lines
7.0 KiB
C++
#ifndef LLMODEL_H
|
|
#define LLMODEL_H
|
|
|
|
#include <string>
|
|
#include <functional>
|
|
#include <vector>
|
|
#include <string_view>
|
|
#include <fstream>
|
|
#include <cstdint>
|
|
#include <limits>
|
|
|
|
#define LLMODEL_MAX_PROMPT_BATCH 128
|
|
|
|
class Dlhandle;
|
|
class LLModel {
|
|
public:
|
|
using Token = int32_t;
|
|
|
|
struct GPUDevice {
|
|
int index;
|
|
int type;
|
|
size_t heapSize;
|
|
std::string name;
|
|
std::string vendor;
|
|
|
|
GPUDevice(int index, int type, size_t heapSize, std::string name, std::string vendor):
|
|
index(index), type(type), heapSize(heapSize), name(std::move(name)), vendor(std::move(vendor)) {}
|
|
};
|
|
|
|
class Implementation {
|
|
public:
|
|
Implementation(Dlhandle &&);
|
|
Implementation(const Implementation &) = delete;
|
|
Implementation(Implementation &&);
|
|
~Implementation();
|
|
|
|
std::string_view modelType() const { return m_modelType; }
|
|
std::string_view buildVariant() const { return m_buildVariant; }
|
|
|
|
static bool isImplementation(const Dlhandle &dl);
|
|
static const std::vector<Implementation> &implementationList();
|
|
static const Implementation *implementation(const char *fname, const std::string &buildVariant);
|
|
static LLModel *construct(const std::string &modelPath, std::string buildVariant = "auto", int n_ctx = 2048);
|
|
static std::vector<GPUDevice> availableGPUDevices();
|
|
static int32_t maxContextLength(const std::string &modelPath);
|
|
static int32_t layerCount(const std::string &modelPath);
|
|
static void setImplementationsSearchPath(const std::string &path);
|
|
static const std::string &implementationsSearchPath();
|
|
|
|
private:
|
|
static LLModel *constructDefaultLlama();
|
|
|
|
bool (*m_magicMatch)(const char *fname);
|
|
LLModel *(*m_construct)();
|
|
|
|
std::string_view m_modelType;
|
|
std::string_view m_buildVariant;
|
|
Dlhandle *m_dlhandle;
|
|
};
|
|
|
|
struct PromptContext {
|
|
std::vector<float> logits; // logits of current context
|
|
std::vector<int32_t> tokens; // current tokens in the context window
|
|
int32_t n_past = 0; // number of tokens in past conversation
|
|
int32_t n_ctx = 0; // number of tokens possible in context window
|
|
int32_t n_predict = 200;
|
|
int32_t top_k = 40;
|
|
float top_p = 0.9f;
|
|
float temp = 0.9f;
|
|
int32_t n_batch = 9;
|
|
float repeat_penalty = 1.10f;
|
|
int32_t repeat_last_n = 64; // last n tokens to penalize
|
|
float contextErase = 0.75f; // percent of context to erase if we exceed the context window
|
|
int32_t n_last_batch_tokens = 0;
|
|
};
|
|
|
|
using ProgressCallback = std::function<bool(float progress)>;
|
|
|
|
explicit LLModel() {}
|
|
virtual ~LLModel() {}
|
|
|
|
virtual bool supportsEmbedding() const = 0;
|
|
virtual bool supportsCompletion() const = 0;
|
|
virtual bool loadModel(const std::string &modelPath, int n_ctx, int ngl) = 0;
|
|
virtual bool isModelBlacklisted(const std::string &modelPath) { (void)modelPath; return false; };
|
|
virtual bool isModelLoaded() const = 0;
|
|
virtual size_t requiredMem(const std::string &modelPath, int n_ctx, int ngl) = 0;
|
|
virtual size_t stateSize() const { return 0; }
|
|
virtual size_t saveState(uint8_t *dest) const { (void)dest; return 0; }
|
|
virtual size_t restoreState(const uint8_t *src) { (void)src; return 0; }
|
|
|
|
// This method requires the model to return true from supportsCompletion otherwise it will throw
|
|
// an error
|
|
virtual void prompt(const std::string &prompt,
|
|
const std::string &promptTemplate,
|
|
std::function<bool(int32_t)> promptCallback,
|
|
std::function<bool(int32_t, const std::string&)> responseCallback,
|
|
std::function<bool(bool)> recalculateCallback,
|
|
PromptContext &ctx,
|
|
bool special = false,
|
|
std::string *fakeReply = nullptr);
|
|
|
|
virtual std::vector<float> embedding(const std::string &text);
|
|
|
|
virtual void setThreadCount(int32_t n_threads) { (void)n_threads; }
|
|
virtual int32_t threadCount() const { return 1; }
|
|
|
|
const Implementation &implementation() const {
|
|
return *m_implementation;
|
|
}
|
|
|
|
virtual std::vector<GPUDevice> availableGPUDevices(size_t memoryRequired) const {
|
|
(void)memoryRequired;
|
|
return {};
|
|
}
|
|
|
|
virtual bool initializeGPUDevice(size_t memoryRequired, const std::string &name) const {
|
|
(void)memoryRequired;
|
|
(void)name;
|
|
return false;
|
|
}
|
|
|
|
virtual bool initializeGPUDevice(int device, std::string *unavail_reason = nullptr) const {
|
|
(void)device;
|
|
if (unavail_reason) {
|
|
*unavail_reason = "model has no GPU support";
|
|
}
|
|
return false;
|
|
}
|
|
|
|
virtual bool hasGPUDevice() { return false; }
|
|
virtual bool usingGPUDevice() { return false; }
|
|
|
|
void setProgressCallback(ProgressCallback callback) { m_progressCallback = callback; }
|
|
|
|
protected:
|
|
// These are pure virtual because subclasses need to implement as the default implementation of
|
|
// 'prompt' above calls these functions
|
|
virtual std::vector<Token> tokenize(PromptContext &ctx, const std::string &str, bool special = false) const = 0;
|
|
virtual std::string tokenToString(Token id) const = 0;
|
|
virtual Token sampleToken(PromptContext &ctx) const = 0;
|
|
virtual bool evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const = 0;
|
|
virtual int32_t contextLength() const = 0;
|
|
virtual const std::vector<Token> &endTokens() const = 0;
|
|
virtual bool shouldAddBOS() const = 0;
|
|
|
|
virtual int32_t maxContextLength(std::string const &modelPath) const
|
|
{
|
|
(void)modelPath;
|
|
return -1;
|
|
}
|
|
|
|
virtual int32_t layerCount(std::string const &modelPath) const
|
|
{
|
|
(void)modelPath;
|
|
return -1;
|
|
}
|
|
|
|
// This is a helper function called from the default implementation of 'prompt' but it can be
|
|
// shared by all base classes so it isn't virtual
|
|
void recalculateContext(PromptContext &promptCtx, std::function<bool(bool)> recalculate);
|
|
|
|
const Implementation *m_implementation = nullptr;
|
|
|
|
ProgressCallback m_progressCallback;
|
|
static bool staticProgressCallback(float progress, void* ctx)
|
|
{
|
|
LLModel* model = static_cast<LLModel*>(ctx);
|
|
if (model && model->m_progressCallback)
|
|
return model->m_progressCallback(progress);
|
|
return true;
|
|
}
|
|
|
|
void decodePrompt(std::function<bool(int32_t)> promptCallback,
|
|
std::function<bool(int32_t, const std::string&)> responseCallback,
|
|
std::function<bool(bool)> recalculateCallback,
|
|
PromptContext &promptCtx,
|
|
std::vector<Token> embd_inp);
|
|
void generateResponse(std::function<bool(int32_t, const std::string&)> responseCallback,
|
|
std::function<bool(bool)> recalculateCallback,
|
|
PromptContext &promptCtx);
|
|
|
|
private:
|
|
friend class LLMImplementation;
|
|
};
|
|
|
|
#endif // LLMODEL_H
|