gpt4all/gpt4all-backend/llmodel.h
Jared Van Bortel 577ebd4826
mixpanel: report cpu_supports_avx2 on startup (#2299)
Signed-off-by: Jared Van Bortel <jared@nomic.ai>
2024-05-02 16:09:41 -04:00

232 lines
8.9 KiB
C++

#ifndef LLMODEL_H
#define LLMODEL_H
#include <cstdint>
#include <fstream>
#include <functional>
#include <limits>
#include <optional>
#include <string>
#include <string_view>
#include <vector>
#define LLMODEL_MAX_PROMPT_BATCH 128
class Dlhandle;
class LLModel {
public:
using Token = int32_t;
class BadArchError: public std::runtime_error {
public:
BadArchError(std::string arch)
: runtime_error("Unsupported model architecture: " + arch)
, m_arch(std::move(arch))
{}
const std::string &arch() const noexcept { return m_arch; }
private:
std::string m_arch;
};
class MissingImplementationError: public std::runtime_error {
public:
using std::runtime_error::runtime_error;
};
class UnsupportedModelError: public std::runtime_error {
public:
using std::runtime_error::runtime_error;
};
struct GPUDevice {
int index;
int type;
size_t heapSize;
std::string name;
std::string vendor;
GPUDevice(int index, int type, size_t heapSize, std::string name, std::string vendor):
index(index), type(type), heapSize(heapSize), name(std::move(name)), vendor(std::move(vendor)) {}
};
class Implementation {
public:
Implementation(const Implementation &) = delete;
Implementation(Implementation &&);
~Implementation();
std::string_view modelType() const { return m_modelType; }
std::string_view buildVariant() const { return m_buildVariant; }
static LLModel *construct(const std::string &modelPath, std::string buildVariant = "auto", int n_ctx = 2048);
static std::vector<GPUDevice> availableGPUDevices(size_t memoryRequired = 0);
static int32_t maxContextLength(const std::string &modelPath);
static int32_t layerCount(const std::string &modelPath);
static bool isEmbeddingModel(const std::string &modelPath);
static void setImplementationsSearchPath(const std::string &path);
static const std::string &implementationsSearchPath();
static bool hasSupportedCPU();
// 0 for no, 1 for yes, -1 for non-x86_64
static int cpuSupportsAVX2();
private:
Implementation(Dlhandle &&);
static const std::vector<Implementation> &implementationList();
static const Implementation *implementation(const char *fname, const std::string &buildVariant);
static LLModel *constructDefaultLlama();
char *(*m_getFileArch)(const char *fname);
bool (*m_isArchSupported)(const char *arch);
LLModel *(*m_construct)();
std::string_view m_modelType;
std::string_view m_buildVariant;
Dlhandle *m_dlhandle;
};
struct PromptContext {
std::vector<float> logits; // logits of current context
std::vector<int32_t> tokens; // current tokens in the context window
int32_t n_past = 0; // number of tokens in past conversation
int32_t n_ctx = 0; // number of tokens possible in context window
int32_t n_predict = 200;
int32_t top_k = 40;
float top_p = 0.9f;
float min_p = 0.0f;
float temp = 0.9f;
int32_t n_batch = 9;
float repeat_penalty = 1.10f;
int32_t repeat_last_n = 64; // last n tokens to penalize
float contextErase = 0.75f; // percent of context to erase if we exceed the context window
int32_t n_last_batch_tokens = 0;
};
using ProgressCallback = std::function<bool(float progress)>;
explicit LLModel() {}
virtual ~LLModel() {}
virtual bool supportsEmbedding() const = 0;
virtual bool supportsCompletion() const = 0;
virtual bool loadModel(const std::string &modelPath, int n_ctx, int ngl) = 0;
virtual bool isModelBlacklisted(const std::string &modelPath) const { (void)modelPath; return false; };
virtual bool isEmbeddingModel(const std::string &modelPath) const { (void)modelPath; return false; }
virtual bool isModelLoaded() const = 0;
virtual size_t requiredMem(const std::string &modelPath, int n_ctx, int ngl) = 0;
virtual size_t stateSize() const { return 0; }
virtual size_t saveState(uint8_t *dest) const { (void)dest; return 0; }
virtual size_t restoreState(const uint8_t *src) { (void)src; return 0; }
// This method requires the model to return true from supportsCompletion otherwise it will throw
// an error
virtual void prompt(const std::string &prompt,
const std::string &promptTemplate,
std::function<bool(int32_t)> promptCallback,
std::function<bool(int32_t, const std::string&)> responseCallback,
std::function<bool(bool)> recalculateCallback,
PromptContext &ctx,
bool special = false,
std::string *fakeReply = nullptr);
using EmbedCancelCallback = bool(unsigned *batchSizes, unsigned nBatch, const char *backend);
virtual size_t embeddingSize() const {
throw std::logic_error(std::string(implementation().modelType()) + " does not support embeddings");
}
// user-specified prefix
virtual void embed(const std::vector<std::string> &texts, float *embeddings, std::optional<std::string> prefix,
int dimensionality = -1, size_t *tokenCount = nullptr, bool doMean = true, bool atlas = false,
EmbedCancelCallback *cancelCb = nullptr);
// automatic prefix
virtual void embed(const std::vector<std::string> &texts, float *embeddings, bool isRetrieval,
int dimensionality = -1, size_t *tokenCount = nullptr, bool doMean = true, bool atlas = false);
virtual void setThreadCount(int32_t n_threads) { (void)n_threads; }
virtual int32_t threadCount() const { return 1; }
const Implementation &implementation() const {
return *m_implementation;
}
virtual std::vector<GPUDevice> availableGPUDevices(size_t memoryRequired) const {
(void)memoryRequired;
return {};
}
virtual bool initializeGPUDevice(size_t memoryRequired, const std::string &name) const {
(void)memoryRequired;
(void)name;
return false;
}
virtual bool initializeGPUDevice(int device, std::string *unavail_reason = nullptr) const {
(void)device;
if (unavail_reason) {
*unavail_reason = "model has no GPU support";
}
return false;
}
virtual bool hasGPUDevice() const { return false; }
virtual bool usingGPUDevice() const { return false; }
virtual const char *backendName() const { return "cpu"; }
virtual const char *gpuDeviceName() const { return nullptr; }
void setProgressCallback(ProgressCallback callback) { m_progressCallback = callback; }
protected:
// These are pure virtual because subclasses need to implement as the default implementation of
// 'prompt' above calls these functions
virtual std::vector<Token> tokenize(PromptContext &ctx, const std::string &str, bool special = false) const = 0;
virtual std::string tokenToString(Token id) const = 0;
virtual Token sampleToken(PromptContext &ctx) const = 0;
virtual bool evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const = 0;
virtual int32_t contextLength() const = 0;
virtual const std::vector<Token> &endTokens() const = 0;
virtual bool shouldAddBOS() const = 0;
virtual int32_t maxContextLength(std::string const &modelPath) const
{
(void)modelPath;
return -1;
}
virtual int32_t layerCount(std::string const &modelPath) const
{
(void)modelPath;
return -1;
}
// This is a helper function called from the default implementation of 'prompt' but it can be
// shared by all base classes so it isn't virtual
void recalculateContext(PromptContext &promptCtx, std::function<bool(bool)> recalculate);
const Implementation *m_implementation = nullptr;
ProgressCallback m_progressCallback;
static bool staticProgressCallback(float progress, void* ctx)
{
LLModel* model = static_cast<LLModel*>(ctx);
if (model && model->m_progressCallback)
return model->m_progressCallback(progress);
return true;
}
void decodePrompt(std::function<bool(int32_t)> promptCallback,
std::function<bool(int32_t, const std::string&)> responseCallback,
std::function<bool(bool)> recalculateCallback,
PromptContext &promptCtx,
std::vector<Token> embd_inp);
void generateResponse(std::function<bool(int32_t, const std::string&)> responseCallback,
std::function<bool(bool)> recalculateCallback,
PromptContext &promptCtx);
private:
friend class LLMImplementation;
};
#endif // LLMODEL_H