498b5c382d
Python Bindings |
||
---|---|---|
.circleci | ||
.github/ISSUE_TEMPLATE | ||
gpt4all-api | ||
gpt4all-backend | ||
gpt4all-bindings | ||
gpt4all-chat | ||
gpt4all-docker | ||
gpt4all-training | ||
.gitignore | ||
.gitmodules | ||
gpt4all-lora-demo.gif | ||
LICENSE.txt | ||
monorepo_plan.md | ||
old-README.md | ||
README.md |
GPT4All
Demo, data, and code to train open-source assistant-style large language model based on GPT-J and LLaMa
📗 Technical Report 3: GPT4All Snoozy and Groovy
📗 Technical Report 2: GPT4All-J
💻 Official Typescript Bindings
🦜️🔗 Official Langchain Backend
GPT4All is made possible by our compute partner Paperspace.
GPT4All: An ecosystem of open-source on-edge large language models.
Run on an M1 Mac (not sped up!)
Chat Client
Run any GPT4All model natively on your home desktop with the auto-updating desktop chat client. See website for exaustive list of models.
Direct Installer Links:
If you have older hardware that only supports avx and not avx2 you can use these.
Find the most up-to-date information on the GPT4All Website
Training GPT4All-J
Please see GPT4All-J Technical Report for details.
GPT4All-J Training Data
- We are releasing the curated training data for anyone to replicate GPT4All-J here: GPT4All-J Training Data
We have released updated versions of our GPT4All-J
model and training data.
v1.0
: The original model trained on the v1.0 datasetv1.1-breezy
: Trained on a filtered dataset where we removed all instances of AI language modelv1.2-jazzy
: Trained on a filtered dataset where we also removed instances like I'm sorry, I can't answer... and AI language model
The models and data versions can be specified by passing a revision
argument.
For example, to load the v1.2-jazzy
model and dataset, run:
from datasets import load_dataset
from transformers import AutoModelForCausalLM
dataset = load_dataset("nomic-ai/gpt4all-j-prompt-generations", revision="v1.2-jazzy")
model = AutoModelForCausalLM.from_pretrained("nomic-ai/gpt4all-j-prompt-generations", revision="v1.2-jazzy")
GPT4All-J Training Instructions
accelerate launch --dynamo_backend=inductor --num_processes=8 --num_machines=1 --machine_rank=0 --deepspeed_multinode_launcher standard --mixed_precision=bf16 --use_deepspeed --deepspeed_config_file=configs/deepspeed/ds_config_gptj.json train.py --config configs/train/finetune_gptj.yaml
Citation
If you utilize this repository, models or data in a downstream project, please consider citing it with:
@misc{gpt4all,
author = {Yuvanesh Anand and Zach Nussbaum and Brandon Duderstadt and Benjamin Schmidt and Andriy Mulyar},
title = {GPT4All: Training an Assistant-style Chatbot with Large Scale Data Distillation from GPT-3.5-Turbo},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/nomic-ai/gpt4all}},
}