mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2024-10-01 01:06:10 -04:00
355 lines
9.7 KiB
C++
355 lines
9.7 KiB
C++
#include "chatllm.h"
|
|
#include "download.h"
|
|
#include "network.h"
|
|
#include "llm.h"
|
|
#include "llmodel/gptj.h"
|
|
#include "llmodel/llamamodel.h"
|
|
|
|
#include <QCoreApplication>
|
|
#include <QDir>
|
|
#include <QFile>
|
|
#include <QProcess>
|
|
#include <QResource>
|
|
#include <QSettings>
|
|
#include <fstream>
|
|
|
|
//#define DEBUG
|
|
|
|
static QString modelFilePath(const QString &modelName)
|
|
{
|
|
QString appPath = QCoreApplication::applicationDirPath()
|
|
+ "/ggml-" + modelName + ".bin";
|
|
QFileInfo infoAppPath(appPath);
|
|
if (infoAppPath.exists())
|
|
return appPath;
|
|
|
|
QString downloadPath = Download::globalInstance()->downloadLocalModelsPath()
|
|
+ "/ggml-" + modelName + ".bin";
|
|
|
|
QFileInfo infoLocalPath(downloadPath);
|
|
if (infoLocalPath.exists())
|
|
return downloadPath;
|
|
return QString();
|
|
}
|
|
|
|
ChatLLM::ChatLLM()
|
|
: QObject{nullptr}
|
|
, m_llmodel(nullptr)
|
|
, m_promptResponseTokens(0)
|
|
, m_responseLogits(0)
|
|
, m_isRecalc(false)
|
|
{
|
|
moveToThread(&m_llmThread);
|
|
connect(&m_llmThread, &QThread::started, this, &ChatLLM::loadModel);
|
|
connect(this, &ChatLLM::sendStartup, Network::globalInstance(), &Network::sendStartup);
|
|
connect(this, &ChatLLM::sendModelLoaded, Network::globalInstance(), &Network::sendModelLoaded);
|
|
connect(this, &ChatLLM::sendResetContext, Network::globalInstance(), &Network::sendResetContext);
|
|
m_llmThread.setObjectName("llm thread"); // FIXME: Should identify these with chat name
|
|
m_llmThread.start();
|
|
}
|
|
|
|
bool ChatLLM::loadModel()
|
|
{
|
|
const QList<QString> models = LLM::globalInstance()->modelList();
|
|
if (models.isEmpty()) {
|
|
// try again when we get a list of models
|
|
connect(Download::globalInstance(), &Download::modelListChanged, this,
|
|
&ChatLLM::loadModel, Qt::SingleShotConnection);
|
|
return false;
|
|
}
|
|
|
|
QSettings settings;
|
|
settings.sync();
|
|
QString defaultModel = settings.value("defaultModel", "gpt4all-j-v1.3-groovy").toString();
|
|
if (defaultModel.isEmpty() || !models.contains(defaultModel))
|
|
defaultModel = models.first();
|
|
return loadModelPrivate(defaultModel);
|
|
}
|
|
|
|
bool ChatLLM::loadModelPrivate(const QString &modelName)
|
|
{
|
|
if (isModelLoaded() && m_modelName == modelName)
|
|
return true;
|
|
|
|
bool isFirstLoad = false;
|
|
if (isModelLoaded()) {
|
|
resetContextPrivate();
|
|
delete m_llmodel;
|
|
m_llmodel = nullptr;
|
|
emit isModelLoadedChanged();
|
|
} else {
|
|
isFirstLoad = true;
|
|
}
|
|
|
|
bool isGPTJ = false;
|
|
QString filePath = modelFilePath(modelName);
|
|
QFileInfo info(filePath);
|
|
if (info.exists()) {
|
|
|
|
auto fin = std::ifstream(filePath.toStdString(), std::ios::binary);
|
|
uint32_t magic;
|
|
fin.read((char *) &magic, sizeof(magic));
|
|
fin.seekg(0);
|
|
fin.close();
|
|
isGPTJ = magic == 0x67676d6c;
|
|
if (isGPTJ) {
|
|
m_llmodel = new GPTJ;
|
|
m_llmodel->loadModel(filePath.toStdString());
|
|
} else {
|
|
m_llmodel = new LLamaModel;
|
|
m_llmodel->loadModel(filePath.toStdString());
|
|
}
|
|
|
|
emit isModelLoadedChanged();
|
|
emit threadCountChanged();
|
|
|
|
if (isFirstLoad)
|
|
emit sendStartup();
|
|
else
|
|
emit sendModelLoaded();
|
|
}
|
|
|
|
if (m_llmodel)
|
|
setModelName(info.completeBaseName().remove(0, 5)); // remove the ggml- prefix
|
|
|
|
return m_llmodel;
|
|
}
|
|
|
|
void ChatLLM::setThreadCount(int32_t n_threads) {
|
|
if (m_llmodel && m_llmodel->threadCount() != n_threads) {
|
|
m_llmodel->setThreadCount(n_threads);
|
|
emit threadCountChanged();
|
|
}
|
|
}
|
|
|
|
int32_t ChatLLM::threadCount() {
|
|
if (!m_llmodel)
|
|
return 1;
|
|
return m_llmodel->threadCount();
|
|
}
|
|
|
|
bool ChatLLM::isModelLoaded() const
|
|
{
|
|
return m_llmodel && m_llmodel->isModelLoaded();
|
|
}
|
|
|
|
void ChatLLM::regenerateResponse()
|
|
{
|
|
m_ctx.n_past -= m_promptResponseTokens;
|
|
m_ctx.n_past = std::max(0, m_ctx.n_past);
|
|
// FIXME: This does not seem to be needed in my testing and llama models don't to it. Remove?
|
|
m_ctx.logits.erase(m_ctx.logits.end() -= m_responseLogits, m_ctx.logits.end());
|
|
m_ctx.tokens.erase(m_ctx.tokens.end() -= m_promptResponseTokens, m_ctx.tokens.end());
|
|
m_promptResponseTokens = 0;
|
|
m_responseLogits = 0;
|
|
m_response = std::string();
|
|
emit responseChanged();
|
|
}
|
|
|
|
void ChatLLM::resetResponse()
|
|
{
|
|
m_promptResponseTokens = 0;
|
|
m_responseLogits = 0;
|
|
m_response = std::string();
|
|
emit responseChanged();
|
|
}
|
|
|
|
void ChatLLM::resetContext()
|
|
{
|
|
resetContextPrivate();
|
|
emit sendResetContext();
|
|
}
|
|
|
|
void ChatLLM::resetContextPrivate()
|
|
{
|
|
regenerateResponse();
|
|
m_ctx = LLModel::PromptContext();
|
|
}
|
|
|
|
std::string remove_leading_whitespace(const std::string& input) {
|
|
auto first_non_whitespace = std::find_if(input.begin(), input.end(), [](unsigned char c) {
|
|
return !std::isspace(c);
|
|
});
|
|
|
|
return std::string(first_non_whitespace, input.end());
|
|
}
|
|
|
|
std::string trim_whitespace(const std::string& input) {
|
|
auto first_non_whitespace = std::find_if(input.begin(), input.end(), [](unsigned char c) {
|
|
return !std::isspace(c);
|
|
});
|
|
|
|
auto last_non_whitespace = std::find_if(input.rbegin(), input.rend(), [](unsigned char c) {
|
|
return !std::isspace(c);
|
|
}).base();
|
|
|
|
return std::string(first_non_whitespace, last_non_whitespace);
|
|
}
|
|
|
|
QString ChatLLM::response() const
|
|
{
|
|
return QString::fromStdString(remove_leading_whitespace(m_response));
|
|
}
|
|
|
|
QString ChatLLM::modelName() const
|
|
{
|
|
return m_modelName;
|
|
}
|
|
|
|
void ChatLLM::setModelName(const QString &modelName)
|
|
{
|
|
m_modelName = modelName;
|
|
emit modelNameChanged();
|
|
}
|
|
|
|
void ChatLLM::modelNameChangeRequested(const QString &modelName)
|
|
{
|
|
if (!loadModelPrivate(modelName))
|
|
qWarning() << "ERROR: Could not load model" << modelName;
|
|
}
|
|
|
|
bool ChatLLM::handlePrompt(int32_t token)
|
|
{
|
|
// m_promptResponseTokens and m_responseLogits are related to last prompt/response not
|
|
// the entire context window which we can reset on regenerate prompt
|
|
++m_promptResponseTokens;
|
|
return !m_stopGenerating;
|
|
}
|
|
|
|
bool ChatLLM::handleResponse(int32_t token, const std::string &response)
|
|
{
|
|
#if defined(DEBUG)
|
|
printf("%s", response.c_str());
|
|
fflush(stdout);
|
|
#endif
|
|
|
|
// check for error
|
|
if (token < 0) {
|
|
m_response.append(response);
|
|
emit responseChanged();
|
|
return false;
|
|
}
|
|
|
|
// m_promptResponseTokens and m_responseLogits are related to last prompt/response not
|
|
// the entire context window which we can reset on regenerate prompt
|
|
++m_promptResponseTokens;
|
|
Q_ASSERT(!response.empty());
|
|
m_response.append(response);
|
|
emit responseChanged();
|
|
return !m_stopGenerating;
|
|
}
|
|
|
|
bool ChatLLM::handleRecalculate(bool isRecalc)
|
|
{
|
|
if (m_isRecalc != isRecalc) {
|
|
m_isRecalc = isRecalc;
|
|
emit recalcChanged();
|
|
}
|
|
return !m_stopGenerating;
|
|
}
|
|
|
|
bool ChatLLM::prompt(const QString &prompt, const QString &prompt_template, int32_t n_predict, int32_t top_k, float top_p,
|
|
float temp, int32_t n_batch, float repeat_penalty, int32_t repeat_penalty_tokens)
|
|
{
|
|
if (!isModelLoaded())
|
|
return false;
|
|
|
|
QString instructPrompt = prompt_template.arg(prompt);
|
|
|
|
m_stopGenerating = false;
|
|
auto promptFunc = std::bind(&ChatLLM::handlePrompt, this, std::placeholders::_1);
|
|
auto responseFunc = std::bind(&ChatLLM::handleResponse, this, std::placeholders::_1,
|
|
std::placeholders::_2);
|
|
auto recalcFunc = std::bind(&ChatLLM::handleRecalculate, this, std::placeholders::_1);
|
|
emit responseStarted();
|
|
qint32 logitsBefore = m_ctx.logits.size();
|
|
m_ctx.n_predict = n_predict;
|
|
m_ctx.top_k = top_k;
|
|
m_ctx.top_p = top_p;
|
|
m_ctx.temp = temp;
|
|
m_ctx.n_batch = n_batch;
|
|
m_ctx.repeat_penalty = repeat_penalty;
|
|
m_ctx.repeat_last_n = repeat_penalty_tokens;
|
|
#if defined(DEBUG)
|
|
printf("%s", qPrintable(instructPrompt));
|
|
fflush(stdout);
|
|
#endif
|
|
m_llmodel->prompt(instructPrompt.toStdString(), promptFunc, responseFunc, recalcFunc, m_ctx);
|
|
#if defined(DEBUG)
|
|
printf("\n");
|
|
fflush(stdout);
|
|
#endif
|
|
m_responseLogits += m_ctx.logits.size() - logitsBefore;
|
|
std::string trimmed = trim_whitespace(m_response);
|
|
if (trimmed != m_response) {
|
|
m_response = trimmed;
|
|
emit responseChanged();
|
|
}
|
|
emit responseStopped();
|
|
return true;
|
|
}
|
|
|
|
void ChatLLM::unload()
|
|
{
|
|
delete m_llmodel;
|
|
m_llmodel = nullptr;
|
|
emit isModelLoadedChanged();
|
|
}
|
|
|
|
void ChatLLM::reload()
|
|
{
|
|
loadModel();
|
|
}
|
|
|
|
void ChatLLM::generateName()
|
|
{
|
|
Q_ASSERT(isModelLoaded());
|
|
if (!isModelLoaded())
|
|
return;
|
|
|
|
QString instructPrompt("### Instruction:\n"
|
|
"Describe response above in three words.\n"
|
|
"### Response:\n");
|
|
auto promptFunc = std::bind(&ChatLLM::handleNamePrompt, this, std::placeholders::_1);
|
|
auto responseFunc = std::bind(&ChatLLM::handleNameResponse, this, std::placeholders::_1,
|
|
std::placeholders::_2);
|
|
auto recalcFunc = std::bind(&ChatLLM::handleNameRecalculate, this, std::placeholders::_1);
|
|
LLModel::PromptContext ctx = m_ctx;
|
|
#if defined(DEBUG)
|
|
printf("%s", qPrintable(instructPrompt));
|
|
fflush(stdout);
|
|
#endif
|
|
m_llmodel->prompt(instructPrompt.toStdString(), promptFunc, responseFunc, recalcFunc, ctx);
|
|
#if defined(DEBUG)
|
|
printf("\n");
|
|
fflush(stdout);
|
|
#endif
|
|
std::string trimmed = trim_whitespace(m_nameResponse);
|
|
if (trimmed != m_nameResponse) {
|
|
m_nameResponse = trimmed;
|
|
emit generatedNameChanged();
|
|
}
|
|
}
|
|
|
|
bool ChatLLM::handleNamePrompt(int32_t token)
|
|
{
|
|
Q_UNUSED(token);
|
|
qt_noop();
|
|
return true;
|
|
}
|
|
|
|
bool ChatLLM::handleNameResponse(int32_t token, const std::string &response)
|
|
{
|
|
Q_UNUSED(token);
|
|
m_nameResponse.append(response);
|
|
emit generatedNameChanged();
|
|
return true;
|
|
}
|
|
|
|
bool ChatLLM::handleNameRecalculate(bool isRecalc)
|
|
{
|
|
Q_UNUSED(isRecalc);
|
|
Q_UNREACHABLE();
|
|
return true;
|
|
}
|