gpt4all: an ecosystem of open-source chatbots trained on a massive collections of clean assistant data including code, stories and dialogue
Go to file
2023-03-28 16:42:30 -04:00
chat Added binaries to chat 2023-03-28 16:35:39 -04:00
configs Merge branch 'main' of https://github.com/nomic-ai/gpt4all into main 2023-03-28 20:23:42 +00:00
eval_data started eval script and added eval data 2023-03-27 21:50:08 +00:00
figs Merge branch 'main' of https://github.com/nomic-ai/gpt4all into main 2023-03-28 20:23:42 +00:00
peft@098962fa65 feat: peft submodule 2023-03-25 16:23:14 +00:00
transformers@cae78c46d6 feat: transformers submodule, gitignore 2023-03-25 16:16:11 +00:00
.gitignore chore: gitignore 2023-03-27 16:33:00 +00:00
.gitmodules feat: peft submodule 2023-03-25 16:23:14 +00:00
clean.py fix: naming 2023-03-27 17:30:33 +00:00
data.py fix: just read from watermark file 2023-03-27 17:30:44 +00:00
env.yaml feat: env for conda, pip 2023-03-25 16:16:40 +00:00
eval_figures.py updated eval 2023-03-28 20:22:48 +00:00
eval_self_instruct.py added eval code 2023-03-28 18:47:38 +00:00
generate.py metrics run on configs now 2023-03-28 00:09:47 +00:00
gpt4all-lora-demo.gif GIF 2023-03-28 15:54:44 -04:00
read.py feat: train and clean data 2023-03-25 16:17:48 +00:00
README.md Update README.md 2023-03-28 16:42:30 -04:00
requirements.txt feat: env for conda, pip 2023-03-25 16:16:40 +00:00
train.py fix: append first_epoch 2023-03-27 17:30:24 +00:00
TRAINING_LOG.md Update TRAINING_LOG.md 2023-03-28 13:24:05 -07:00

GPT4All

Demo, data and code to train an assistant-style large language model on ~440k GPT-3.5-Turbo Generations

📗 Technical Report

gpt4all-lora-demo

Try it yourself

Clone this repository down and download the CPU quantized gpt4all model.

Place the quantized model in the chat directory and start chatting by running:

  • ./chat/gpt4all-lora-quantized-OSX-m1 on Mac/OSX
  • ./chat/gpt4all-lora-quantized-linux-x86 on Windows/Linux

To compile for custom hardware, see our fork of the Alpaca C++ repo.

Reproducibility

Trained LoRa Weights:

Raw Data:

We are not distributing a LLaMa 7B checkpoint.

You can reproduce our trained model by doing the following:

Setup

Clone the repo

git clone --recurse-submodules git@github.com:nomic-ai/gpt4all.git

git submodule configure && git submodule update

Setup the environment

python -m pip install -r requirements.txt

cd transformers
pip install -e . 

cd ../peft
pip install -e .

Training

accelerate launch --dynamo_backend=inductor --num_processes=8 --num_machines=1 --machine_rank=0 --deepspeed_multinode_launcher standard --mixed_precision=bf16  --use_deepspeed --deepspeed_config_file=configs/deepspeed/ds_config.json train.py --config configs/train/finetune-7b.yaml

Generate

python generate.py --config configs/generate/generate.yaml --prompt "Write a script to reverse a string in Python

If you utilize this reposistory, models or data in a downstream project, please consider citing it with:

@misc{gpt4all,
  author = {Yuvanesh Anand and Zach Nussbaum and Brandon Duderstadt and Benjamin Schmidt and Andriy Mulyar},
  title = {GPT4All: Training an Assistant-style Chatbot with Large Scale Data Distillation from GPT-3.5-Turbo},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/nomic-ai/gpt4all}},
}