chat | ||
configs | ||
eval_data | ||
figs | ||
peft@098962fa65 | ||
transformers@cae78c46d6 | ||
.gitignore | ||
.gitmodules | ||
clean.py | ||
data.py | ||
env.yaml | ||
eval_figures.py | ||
eval_self_instruct.py | ||
generate.py | ||
gpt4all-lora-demo.gif | ||
read.py | ||
README.md | ||
requirements.txt | ||
train.py | ||
TRAINING_LOG.md |
GPT4All
Demo, data and code to train an assistant-style large language model with ~800k GPT-3.5-Turbo Generations based on LLaMa
Run on M1 Mac (not sped up!)
Try it yourself
Download the CPU quantized gpt4all model checkpoint: gpt4all-lora-quantized.bin
Clone this repository down and place the quantized model in the chat
directory and start chatting by running:
cd chat;./gpt4all-lora-quantized-OSX-m1
on M1 Mac/OSXcd chat;./gpt4all-lora-quantized-linux-x86
on Linuxcd chat;./gpt4all-lora-quantized-win64.exe
on Windows (PowerShell)
To compile for custom hardware, see our fork of the Alpaca C++ repo.
Note: the full model on GPU (16GB of RAM required) performs much better in our qualitative evaluations.
Reproducibility
Trained LoRa Weights:
- gpt4all-lora: https://huggingface.co/nomic-ai/gpt4all-lora
- gpt4all-lora-epoch-2 https://huggingface.co/nomic-ai/gpt4all-lora-epoch-2
Raw Data:
We are not distributing a LLaMa 7B checkpoint.
You can reproduce our trained model by doing the following:
Setup
Clone the repo
git clone --recurse-submodules git@github.com:nomic-ai/gpt4all.git
git submodule configure && git submodule update
Setup the environment
python -m pip install -r requirements.txt
cd transformers
pip install -e .
cd ../peft
pip install -e .
Training
accelerate launch --dynamo_backend=inductor --num_processes=8 --num_machines=1 --machine_rank=0 --deepspeed_multinode_launcher standard --mixed_precision=bf16 --use_deepspeed --deepspeed_config_file=configs/deepspeed/ds_config.json train.py --config configs/train/finetune-7b.yaml
Generate
python generate.py --config configs/generate/generate.yaml --prompt "Write a script to reverse a string in Python"
Sample Generations
Provide instructions for the given exercise. Leg Raises
Leg Raises
- Stand with your feet shoulder-width apart and your knees slightly bent.
- Raise your arms straight out in front of you.
- Slowly bend your knees and raise your heels off the ground.
- Hold this position for a count of 3, then slowly lower your heels back to the ground.
- Repeat the exercise 10 times.
- Do not let your knees go beyond your toes.
- Keep your back straight and your abdominal muscles engaged.
- Do not let your hips sag or your back arch.
- Keep your arms straight and your elbows locked.
- Do not let your head drop or your shoulders rise.
- Breathe normally throughout the exercise.
- Rest for 30 seconds before repeating the exercise.
- Gradually increase the number of repetitions as you become stronger.
A color description has been provided. Find the CSS code associated with that color. A light red color with a medium light shade of pink
The CSS code associated with the color provided is: #FF6347
Come up with an interesting idea for a new movie plot. Your plot should be described with a title and a summary.
- The title of your movie plot should be "The Last Stand". 2. The summary of your movie plot should be: A group of mercenaries are hired to protect a small town from a dangerous criminal who is on the run. However, the town's sheriff is not willing to let them take over and decides to take matters into his own hands.
Reverse a string in python.
In Python, you can reverse a list or tuple by using the reversed() function on it. Here's an example of how to use this method with strings:
my_string = "Hello World" # Define your original string here reversed_str = my_string[::-1] # Use a slice and negative index for reverse order print(reversed_str) # Output will be reversed version of the inputted string.
List 10 dogs.
- Labrador Retriever
- Golden Retriever
- Beagle
- Poodle
- German Shepherd
- Bulldog
- Rottweiler
- Boxer
- Shih Tzu
- Pug
Write me a poem about the fall of Julius Ceasar into a ceasar salad in iambic pentameter.
The fall of Julius Ceasar into a ceasar salad In iambic pentameter, The mighty Roman emperor Fell into a salad of lettuce and croutons, His empire crumbling around him, As he was devoured by the hungry diners. The once mighty emperor Was now just a salad topping, His legacy reduced to a mere garnish, As he was consumed by the masses. The fall of Julius Ceasar into a ceasar salad, In iambic pentameter, Was a tragic end to a great man, Who had once ruled the world with an iron fist. But now, he was just a salad topping, His legacy reduced to a mere garnish, As he was consumed by the masses.
What is a three word topic describing the following keywords: baseball, football, soccer:
Sports, athletics, games
If you utilize this reposistory, models or data in a downstream project, please consider citing it with:
@misc{gpt4all,
author = {Yuvanesh Anand and Zach Nussbaum and Brandon Duderstadt and Benjamin Schmidt and Andriy Mulyar},
title = {GPT4All: Training an Assistant-style Chatbot with Large Scale Data Distillation from GPT-3.5-Turbo},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/nomic-ai/gpt4all}},
}