gpt4all/gpt4all-bindings/typescript/index.cc
Jared Van Bortel 1b84a48c47
python: add list_gpus to the GPT4All API (#2194)
Other changes:
* fix memory leak in llmodel_available_gpu_devices
* drop model argument from llmodel_available_gpu_devices
* breaking: make GPT4All/Embed4All arguments past model_name keyword-only

Signed-off-by: Jared Van Bortel <jared@nomic.ai>
2024-04-04 14:52:13 -04:00

453 lines
18 KiB
C++

#include "index.h"
#include "napi.h"
Napi::Function NodeModelWrapper::GetClass(Napi::Env env)
{
Napi::Function self = DefineClass(env, "LLModel",
{InstanceMethod("type", &NodeModelWrapper::GetType),
InstanceMethod("isModelLoaded", &NodeModelWrapper::IsModelLoaded),
InstanceMethod("name", &NodeModelWrapper::GetName),
InstanceMethod("stateSize", &NodeModelWrapper::StateSize),
InstanceMethod("infer", &NodeModelWrapper::Infer),
InstanceMethod("setThreadCount", &NodeModelWrapper::SetThreadCount),
InstanceMethod("embed", &NodeModelWrapper::GenerateEmbedding),
InstanceMethod("threadCount", &NodeModelWrapper::ThreadCount),
InstanceMethod("getLibraryPath", &NodeModelWrapper::GetLibraryPath),
InstanceMethod("initGpuByString", &NodeModelWrapper::InitGpuByString),
InstanceMethod("hasGpuDevice", &NodeModelWrapper::HasGpuDevice),
InstanceMethod("listGpu", &NodeModelWrapper::GetGpuDevices),
InstanceMethod("memoryNeeded", &NodeModelWrapper::GetRequiredMemory),
InstanceMethod("dispose", &NodeModelWrapper::Dispose)});
// Keep a static reference to the constructor
//
Napi::FunctionReference *constructor = new Napi::FunctionReference();
*constructor = Napi::Persistent(self);
env.SetInstanceData(constructor);
return self;
}
Napi::Value NodeModelWrapper::GetRequiredMemory(const Napi::CallbackInfo &info)
{
auto env = info.Env();
return Napi::Number::New(
env, static_cast<uint32_t>(llmodel_required_mem(GetInference(), full_model_path.c_str(), nCtx, nGpuLayers)));
}
Napi::Value NodeModelWrapper::GetGpuDevices(const Napi::CallbackInfo &info)
{
auto env = info.Env();
int num_devices = 0;
auto mem_size = llmodel_required_mem(GetInference(), full_model_path.c_str(), nCtx, nGpuLayers);
llmodel_gpu_device *all_devices = llmodel_available_gpu_devices(mem_size, &num_devices);
if (all_devices == nullptr)
{
Napi::Error::New(env, "Unable to retrieve list of all GPU devices").ThrowAsJavaScriptException();
return env.Undefined();
}
auto js_array = Napi::Array::New(env, num_devices);
for (int i = 0; i < num_devices; ++i)
{
auto gpu_device = all_devices[i];
/*
*
* struct llmodel_gpu_device {
int index = 0;
int type = 0; // same as VkPhysicalDeviceType
size_t heapSize = 0;
const char * name;
const char * vendor;
};
*
*/
Napi::Object js_gpu_device = Napi::Object::New(env);
js_gpu_device["index"] = uint32_t(gpu_device.index);
js_gpu_device["type"] = uint32_t(gpu_device.type);
js_gpu_device["heapSize"] = static_cast<uint32_t>(gpu_device.heapSize);
js_gpu_device["name"] = gpu_device.name;
js_gpu_device["vendor"] = gpu_device.vendor;
js_array[i] = js_gpu_device;
}
return js_array;
}
Napi::Value NodeModelWrapper::GetType(const Napi::CallbackInfo &info)
{
if (type.empty())
{
return info.Env().Undefined();
}
return Napi::String::New(info.Env(), type);
}
Napi::Value NodeModelWrapper::InitGpuByString(const Napi::CallbackInfo &info)
{
auto env = info.Env();
size_t memory_required = static_cast<size_t>(info[0].As<Napi::Number>().Uint32Value());
std::string gpu_device_identifier = info[1].As<Napi::String>();
size_t converted_value;
if (memory_required <= std::numeric_limits<size_t>::max())
{
converted_value = static_cast<size_t>(memory_required);
}
else
{
Napi::Error::New(env, "invalid number for memory size. Exceeded bounds for memory.")
.ThrowAsJavaScriptException();
return env.Undefined();
}
auto result = llmodel_gpu_init_gpu_device_by_string(GetInference(), converted_value, gpu_device_identifier.c_str());
return Napi::Boolean::New(env, result);
}
Napi::Value NodeModelWrapper::HasGpuDevice(const Napi::CallbackInfo &info)
{
return Napi::Boolean::New(info.Env(), llmodel_has_gpu_device(GetInference()));
}
NodeModelWrapper::NodeModelWrapper(const Napi::CallbackInfo &info) : Napi::ObjectWrap<NodeModelWrapper>(info)
{
auto env = info.Env();
auto config_object = info[0].As<Napi::Object>();
// sets the directory where models (gguf files) are to be searched
llmodel_set_implementation_search_path(
config_object.Has("library_path") ? config_object.Get("library_path").As<Napi::String>().Utf8Value().c_str()
: ".");
std::string model_name = config_object.Get("model_name").As<Napi::String>();
fs::path model_path = config_object.Get("model_path").As<Napi::String>().Utf8Value();
std::string full_weight_path = (model_path / fs::path(model_name)).string();
name = model_name.empty() ? model_path.filename().string() : model_name;
full_model_path = full_weight_path;
nCtx = config_object.Get("nCtx").As<Napi::Number>().Int32Value();
nGpuLayers = config_object.Get("ngl").As<Napi::Number>().Int32Value();
const char *e;
inference_ = llmodel_model_create2(full_weight_path.c_str(), "auto", &e);
if (!inference_)
{
Napi::Error::New(env, e).ThrowAsJavaScriptException();
return;
}
if (GetInference() == nullptr)
{
std::cerr << "Tried searching libraries in \"" << llmodel_get_implementation_search_path() << "\"" << std::endl;
std::cerr << "Tried searching for model weight in \"" << full_weight_path << "\"" << std::endl;
std::cerr << "Do you have runtime libraries installed?" << std::endl;
Napi::Error::New(env, "Had an issue creating llmodel object, inference is null").ThrowAsJavaScriptException();
return;
}
std::string device = config_object.Get("device").As<Napi::String>();
if (device != "cpu")
{
size_t mem = llmodel_required_mem(GetInference(), full_weight_path.c_str(), nCtx, nGpuLayers);
auto success = llmodel_gpu_init_gpu_device_by_string(GetInference(), mem, device.c_str());
if (!success)
{
// https://github.com/nomic-ai/gpt4all/blob/3acbef14b7c2436fe033cae9036e695d77461a16/gpt4all-bindings/python/gpt4all/pyllmodel.py#L215
// Haven't implemented this but it is still open to contribution
std::cout << "WARNING: Failed to init GPU\n";
}
}
auto success = llmodel_loadModel(GetInference(), full_weight_path.c_str(), nCtx, nGpuLayers);
if (!success)
{
Napi::Error::New(env, "Failed to load model at given path").ThrowAsJavaScriptException();
return;
}
// optional
if (config_object.Has("model_type"))
{
type = config_object.Get("model_type").As<Napi::String>();
}
};
// NodeModelWrapper::~NodeModelWrapper() {
// if(GetInference() != nullptr) {
// std::cout << "Debug: deleting model\n";
// llmodel_model_destroy(inference_);
// std::cout << (inference_ == nullptr);
// }
// }
// void NodeModelWrapper::Finalize(Napi::Env env) {
// if(inference_ != nullptr) {
// std::cout << "Debug: deleting model\n";
//
// }
// }
Napi::Value NodeModelWrapper::IsModelLoaded(const Napi::CallbackInfo &info)
{
return Napi::Boolean::New(info.Env(), llmodel_isModelLoaded(GetInference()));
}
Napi::Value NodeModelWrapper::StateSize(const Napi::CallbackInfo &info)
{
// Implement the binding for the stateSize method
return Napi::Number::New(info.Env(), static_cast<int64_t>(llmodel_get_state_size(GetInference())));
}
Napi::Array ChunkedFloatPtr(float *embedding_ptr, int embedding_size, int text_len, Napi::Env const &env)
{
auto n_embd = embedding_size / text_len;
// std::cout << "Embedding size: " << embedding_size << std::endl;
// std::cout << "Text length: " << text_len << std::endl;
// std::cout << "Chunk size (n_embd): " << n_embd << std::endl;
Napi::Array result = Napi::Array::New(env, text_len);
auto count = 0;
for (int i = 0; i < embedding_size; i += n_embd)
{
int end = std::min(i + n_embd, embedding_size);
// possible bounds error?
// Constructs a container with as many elements as the range [first,last), with each element emplace-constructed
// from its corresponding element in that range, in the same order.
std::vector<float> chunk(embedding_ptr + i, embedding_ptr + end);
Napi::Float32Array fltarr = Napi::Float32Array::New(env, chunk.size());
// I know there's a way to emplace the raw float ptr into a Napi::Float32Array but idk how and
// im too scared to cause memory issues
// this is goodenough
for (int j = 0; j < chunk.size(); j++)
{
fltarr.Set(j, chunk[j]);
}
result.Set(count++, fltarr);
}
return result;
}
Napi::Value NodeModelWrapper::GenerateEmbedding(const Napi::CallbackInfo &info)
{
auto env = info.Env();
auto prefix = info[1];
auto dimensionality = info[2].As<Napi::Number>().Int32Value();
auto do_mean = info[3].As<Napi::Boolean>().Value();
auto atlas = info[4].As<Napi::Boolean>().Value();
size_t embedding_size;
size_t token_count = 0;
// This procedure can maybe be optimized but its whatever, i have too many intermediary structures
std::vector<std::string> text_arr;
bool is_single_text = false;
if (info[0].IsString())
{
is_single_text = true;
text_arr.push_back(info[0].As<Napi::String>().Utf8Value());
}
else
{
auto jsarr = info[0].As<Napi::Array>();
size_t len = jsarr.Length();
text_arr.reserve(len);
for (size_t i = 0; i < len; ++i)
{
std::string str = jsarr.Get(i).As<Napi::String>().Utf8Value();
text_arr.push_back(str);
}
}
std::vector<const char *> str_ptrs;
str_ptrs.reserve(text_arr.size() + 1);
for (size_t i = 0; i < text_arr.size(); ++i)
str_ptrs.push_back(text_arr[i].c_str());
str_ptrs.push_back(nullptr);
const char *_err = nullptr;
float *embeds = llmodel_embed(GetInference(), str_ptrs.data(), &embedding_size,
prefix.IsUndefined() ? nullptr : prefix.As<Napi::String>().Utf8Value().c_str(),
dimensionality, &token_count, do_mean, atlas, &_err);
if (!embeds)
{
// i dont wanna deal with c strings lol
std::string err(_err);
Napi::Error::New(env, err == "(unknown error)" ? "Unknown error: sorry bud" : err).ThrowAsJavaScriptException();
return env.Undefined();
}
auto embedmat = ChunkedFloatPtr(embeds, embedding_size, text_arr.size(), env);
llmodel_free_embedding(embeds);
auto res = Napi::Object::New(env);
res.Set("n_prompt_tokens", token_count);
if(is_single_text) {
res.Set("embeddings", embedmat.Get(static_cast<uint32_t>(0)));
} else {
res.Set("embeddings", embedmat);
}
return res;
}
/**
* Generate a response using the model.
* @param prompt A string representing the input prompt.
* @param options Inference options.
*/
Napi::Value NodeModelWrapper::Infer(const Napi::CallbackInfo &info)
{
auto env = info.Env();
std::string prompt;
if (info[0].IsString())
{
prompt = info[0].As<Napi::String>().Utf8Value();
}
else
{
Napi::Error::New(info.Env(), "invalid string argument").ThrowAsJavaScriptException();
return info.Env().Undefined();
}
if (!info[1].IsObject())
{
Napi::Error::New(info.Env(), "Missing Prompt Options").ThrowAsJavaScriptException();
return info.Env().Undefined();
}
// defaults copied from python bindings
llmodel_prompt_context promptContext = {.logits = nullptr,
.tokens = nullptr,
.n_past = 0,
.n_ctx = nCtx,
.n_predict = 4096,
.top_k = 40,
.top_p = 0.9f,
.min_p = 0.0f,
.temp = 0.1f,
.n_batch = 8,
.repeat_penalty = 1.2f,
.repeat_last_n = 10,
.context_erase = 0.75};
PromptWorkerConfig promptWorkerConfig;
auto inputObject = info[1].As<Napi::Object>();
if (inputObject.Has("logits") || inputObject.Has("tokens"))
{
Napi::Error::New(info.Env(), "Invalid input: 'logits' or 'tokens' properties are not allowed")
.ThrowAsJavaScriptException();
return info.Env().Undefined();
}
// Assign the remaining properties
if (inputObject.Has("nPast") && inputObject.Get("nPast").IsNumber())
{
promptContext.n_past = inputObject.Get("nPast").As<Napi::Number>().Int32Value();
}
if (inputObject.Has("nPredict") && inputObject.Get("nPredict").IsNumber())
{
promptContext.n_predict = inputObject.Get("nPredict").As<Napi::Number>().Int32Value();
}
if (inputObject.Has("topK") && inputObject.Get("topK").IsNumber())
{
promptContext.top_k = inputObject.Get("topK").As<Napi::Number>().Int32Value();
}
if (inputObject.Has("topP") && inputObject.Get("topP").IsNumber())
{
promptContext.top_p = inputObject.Get("topP").As<Napi::Number>().FloatValue();
}
if (inputObject.Has("minP") && inputObject.Get("minP").IsNumber())
{
promptContext.min_p = inputObject.Get("minP").As<Napi::Number>().FloatValue();
}
if (inputObject.Has("temp") && inputObject.Get("temp").IsNumber())
{
promptContext.temp = inputObject.Get("temp").As<Napi::Number>().FloatValue();
}
if (inputObject.Has("nBatch") && inputObject.Get("nBatch").IsNumber())
{
promptContext.n_batch = inputObject.Get("nBatch").As<Napi::Number>().Int32Value();
}
if (inputObject.Has("repeatPenalty") && inputObject.Get("repeatPenalty").IsNumber())
{
promptContext.repeat_penalty = inputObject.Get("repeatPenalty").As<Napi::Number>().FloatValue();
}
if (inputObject.Has("repeatLastN") && inputObject.Get("repeatLastN").IsNumber())
{
promptContext.repeat_last_n = inputObject.Get("repeatLastN").As<Napi::Number>().Int32Value();
}
if (inputObject.Has("contextErase") && inputObject.Get("contextErase").IsNumber())
{
promptContext.context_erase = inputObject.Get("contextErase").As<Napi::Number>().FloatValue();
}
if (inputObject.Has("onPromptToken") && inputObject.Get("onPromptToken").IsFunction())
{
promptWorkerConfig.promptCallback = inputObject.Get("onPromptToken").As<Napi::Function>();
promptWorkerConfig.hasPromptCallback = true;
}
if (inputObject.Has("onResponseToken") && inputObject.Get("onResponseToken").IsFunction())
{
promptWorkerConfig.responseCallback = inputObject.Get("onResponseToken").As<Napi::Function>();
promptWorkerConfig.hasResponseCallback = true;
}
// copy to protect llmodel resources when splitting to new thread
// llmodel_prompt_context copiedPrompt = promptContext;
promptWorkerConfig.context = promptContext;
promptWorkerConfig.model = GetInference();
promptWorkerConfig.mutex = &inference_mutex;
promptWorkerConfig.prompt = prompt;
promptWorkerConfig.result = "";
promptWorkerConfig.promptTemplate = inputObject.Get("promptTemplate").As<Napi::String>();
if (inputObject.Has("special"))
{
promptWorkerConfig.special = inputObject.Get("special").As<Napi::Boolean>();
}
if (inputObject.Has("fakeReply"))
{
// this will be deleted in the worker
promptWorkerConfig.fakeReply = new std::string(inputObject.Get("fakeReply").As<Napi::String>().Utf8Value());
}
auto worker = new PromptWorker(env, promptWorkerConfig);
worker->Queue();
return worker->GetPromise();
}
void NodeModelWrapper::Dispose(const Napi::CallbackInfo &info)
{
llmodel_model_destroy(inference_);
}
void NodeModelWrapper::SetThreadCount(const Napi::CallbackInfo &info)
{
if (info[0].IsNumber())
{
llmodel_setThreadCount(GetInference(), info[0].As<Napi::Number>().Int64Value());
}
else
{
Napi::Error::New(info.Env(), "Could not set thread count: argument 1 is NaN").ThrowAsJavaScriptException();
return;
}
}
Napi::Value NodeModelWrapper::GetName(const Napi::CallbackInfo &info)
{
return Napi::String::New(info.Env(), name);
}
Napi::Value NodeModelWrapper::ThreadCount(const Napi::CallbackInfo &info)
{
return Napi::Number::New(info.Env(), llmodel_threadCount(GetInference()));
}
Napi::Value NodeModelWrapper::GetLibraryPath(const Napi::CallbackInfo &info)
{
return Napi::String::New(info.Env(), llmodel_get_implementation_search_path());
}
llmodel_model NodeModelWrapper::GetInference()
{
return inference_;
}
// Exports Bindings
Napi::Object Init(Napi::Env env, Napi::Object exports)
{
exports["LLModel"] = NodeModelWrapper::GetClass(env);
return exports;
}
NODE_API_MODULE(NODE_GYP_MODULE_NAME, Init)