mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2024-10-01 01:06:10 -04:00
1b84a48c47
Other changes: * fix memory leak in llmodel_available_gpu_devices * drop model argument from llmodel_available_gpu_devices * breaking: make GPT4All/Embed4All arguments past model_name keyword-only Signed-off-by: Jared Van Bortel <jared@nomic.ai>
453 lines
18 KiB
C++
453 lines
18 KiB
C++
#include "index.h"
|
|
#include "napi.h"
|
|
|
|
Napi::Function NodeModelWrapper::GetClass(Napi::Env env)
|
|
{
|
|
Napi::Function self = DefineClass(env, "LLModel",
|
|
{InstanceMethod("type", &NodeModelWrapper::GetType),
|
|
InstanceMethod("isModelLoaded", &NodeModelWrapper::IsModelLoaded),
|
|
InstanceMethod("name", &NodeModelWrapper::GetName),
|
|
InstanceMethod("stateSize", &NodeModelWrapper::StateSize),
|
|
InstanceMethod("infer", &NodeModelWrapper::Infer),
|
|
InstanceMethod("setThreadCount", &NodeModelWrapper::SetThreadCount),
|
|
InstanceMethod("embed", &NodeModelWrapper::GenerateEmbedding),
|
|
InstanceMethod("threadCount", &NodeModelWrapper::ThreadCount),
|
|
InstanceMethod("getLibraryPath", &NodeModelWrapper::GetLibraryPath),
|
|
InstanceMethod("initGpuByString", &NodeModelWrapper::InitGpuByString),
|
|
InstanceMethod("hasGpuDevice", &NodeModelWrapper::HasGpuDevice),
|
|
InstanceMethod("listGpu", &NodeModelWrapper::GetGpuDevices),
|
|
InstanceMethod("memoryNeeded", &NodeModelWrapper::GetRequiredMemory),
|
|
InstanceMethod("dispose", &NodeModelWrapper::Dispose)});
|
|
// Keep a static reference to the constructor
|
|
//
|
|
Napi::FunctionReference *constructor = new Napi::FunctionReference();
|
|
*constructor = Napi::Persistent(self);
|
|
env.SetInstanceData(constructor);
|
|
return self;
|
|
}
|
|
Napi::Value NodeModelWrapper::GetRequiredMemory(const Napi::CallbackInfo &info)
|
|
{
|
|
auto env = info.Env();
|
|
return Napi::Number::New(
|
|
env, static_cast<uint32_t>(llmodel_required_mem(GetInference(), full_model_path.c_str(), nCtx, nGpuLayers)));
|
|
}
|
|
Napi::Value NodeModelWrapper::GetGpuDevices(const Napi::CallbackInfo &info)
|
|
{
|
|
auto env = info.Env();
|
|
int num_devices = 0;
|
|
auto mem_size = llmodel_required_mem(GetInference(), full_model_path.c_str(), nCtx, nGpuLayers);
|
|
llmodel_gpu_device *all_devices = llmodel_available_gpu_devices(mem_size, &num_devices);
|
|
if (all_devices == nullptr)
|
|
{
|
|
Napi::Error::New(env, "Unable to retrieve list of all GPU devices").ThrowAsJavaScriptException();
|
|
return env.Undefined();
|
|
}
|
|
auto js_array = Napi::Array::New(env, num_devices);
|
|
for (int i = 0; i < num_devices; ++i)
|
|
{
|
|
auto gpu_device = all_devices[i];
|
|
/*
|
|
*
|
|
* struct llmodel_gpu_device {
|
|
int index = 0;
|
|
int type = 0; // same as VkPhysicalDeviceType
|
|
size_t heapSize = 0;
|
|
const char * name;
|
|
const char * vendor;
|
|
};
|
|
*
|
|
*/
|
|
Napi::Object js_gpu_device = Napi::Object::New(env);
|
|
js_gpu_device["index"] = uint32_t(gpu_device.index);
|
|
js_gpu_device["type"] = uint32_t(gpu_device.type);
|
|
js_gpu_device["heapSize"] = static_cast<uint32_t>(gpu_device.heapSize);
|
|
js_gpu_device["name"] = gpu_device.name;
|
|
js_gpu_device["vendor"] = gpu_device.vendor;
|
|
|
|
js_array[i] = js_gpu_device;
|
|
}
|
|
return js_array;
|
|
}
|
|
|
|
Napi::Value NodeModelWrapper::GetType(const Napi::CallbackInfo &info)
|
|
{
|
|
if (type.empty())
|
|
{
|
|
return info.Env().Undefined();
|
|
}
|
|
return Napi::String::New(info.Env(), type);
|
|
}
|
|
|
|
Napi::Value NodeModelWrapper::InitGpuByString(const Napi::CallbackInfo &info)
|
|
{
|
|
auto env = info.Env();
|
|
size_t memory_required = static_cast<size_t>(info[0].As<Napi::Number>().Uint32Value());
|
|
|
|
std::string gpu_device_identifier = info[1].As<Napi::String>();
|
|
|
|
size_t converted_value;
|
|
if (memory_required <= std::numeric_limits<size_t>::max())
|
|
{
|
|
converted_value = static_cast<size_t>(memory_required);
|
|
}
|
|
else
|
|
{
|
|
Napi::Error::New(env, "invalid number for memory size. Exceeded bounds for memory.")
|
|
.ThrowAsJavaScriptException();
|
|
return env.Undefined();
|
|
}
|
|
|
|
auto result = llmodel_gpu_init_gpu_device_by_string(GetInference(), converted_value, gpu_device_identifier.c_str());
|
|
return Napi::Boolean::New(env, result);
|
|
}
|
|
Napi::Value NodeModelWrapper::HasGpuDevice(const Napi::CallbackInfo &info)
|
|
{
|
|
return Napi::Boolean::New(info.Env(), llmodel_has_gpu_device(GetInference()));
|
|
}
|
|
|
|
NodeModelWrapper::NodeModelWrapper(const Napi::CallbackInfo &info) : Napi::ObjectWrap<NodeModelWrapper>(info)
|
|
{
|
|
auto env = info.Env();
|
|
auto config_object = info[0].As<Napi::Object>();
|
|
|
|
// sets the directory where models (gguf files) are to be searched
|
|
llmodel_set_implementation_search_path(
|
|
config_object.Has("library_path") ? config_object.Get("library_path").As<Napi::String>().Utf8Value().c_str()
|
|
: ".");
|
|
|
|
std::string model_name = config_object.Get("model_name").As<Napi::String>();
|
|
fs::path model_path = config_object.Get("model_path").As<Napi::String>().Utf8Value();
|
|
std::string full_weight_path = (model_path / fs::path(model_name)).string();
|
|
|
|
name = model_name.empty() ? model_path.filename().string() : model_name;
|
|
full_model_path = full_weight_path;
|
|
nCtx = config_object.Get("nCtx").As<Napi::Number>().Int32Value();
|
|
nGpuLayers = config_object.Get("ngl").As<Napi::Number>().Int32Value();
|
|
|
|
const char *e;
|
|
inference_ = llmodel_model_create2(full_weight_path.c_str(), "auto", &e);
|
|
if (!inference_)
|
|
{
|
|
Napi::Error::New(env, e).ThrowAsJavaScriptException();
|
|
return;
|
|
}
|
|
if (GetInference() == nullptr)
|
|
{
|
|
std::cerr << "Tried searching libraries in \"" << llmodel_get_implementation_search_path() << "\"" << std::endl;
|
|
std::cerr << "Tried searching for model weight in \"" << full_weight_path << "\"" << std::endl;
|
|
std::cerr << "Do you have runtime libraries installed?" << std::endl;
|
|
Napi::Error::New(env, "Had an issue creating llmodel object, inference is null").ThrowAsJavaScriptException();
|
|
return;
|
|
}
|
|
|
|
std::string device = config_object.Get("device").As<Napi::String>();
|
|
if (device != "cpu")
|
|
{
|
|
size_t mem = llmodel_required_mem(GetInference(), full_weight_path.c_str(), nCtx, nGpuLayers);
|
|
|
|
auto success = llmodel_gpu_init_gpu_device_by_string(GetInference(), mem, device.c_str());
|
|
if (!success)
|
|
{
|
|
// https://github.com/nomic-ai/gpt4all/blob/3acbef14b7c2436fe033cae9036e695d77461a16/gpt4all-bindings/python/gpt4all/pyllmodel.py#L215
|
|
// Haven't implemented this but it is still open to contribution
|
|
std::cout << "WARNING: Failed to init GPU\n";
|
|
}
|
|
}
|
|
|
|
auto success = llmodel_loadModel(GetInference(), full_weight_path.c_str(), nCtx, nGpuLayers);
|
|
if (!success)
|
|
{
|
|
Napi::Error::New(env, "Failed to load model at given path").ThrowAsJavaScriptException();
|
|
return;
|
|
}
|
|
// optional
|
|
if (config_object.Has("model_type"))
|
|
{
|
|
type = config_object.Get("model_type").As<Napi::String>();
|
|
}
|
|
};
|
|
|
|
// NodeModelWrapper::~NodeModelWrapper() {
|
|
// if(GetInference() != nullptr) {
|
|
// std::cout << "Debug: deleting model\n";
|
|
// llmodel_model_destroy(inference_);
|
|
// std::cout << (inference_ == nullptr);
|
|
// }
|
|
// }
|
|
// void NodeModelWrapper::Finalize(Napi::Env env) {
|
|
// if(inference_ != nullptr) {
|
|
// std::cout << "Debug: deleting model\n";
|
|
//
|
|
// }
|
|
// }
|
|
Napi::Value NodeModelWrapper::IsModelLoaded(const Napi::CallbackInfo &info)
|
|
{
|
|
return Napi::Boolean::New(info.Env(), llmodel_isModelLoaded(GetInference()));
|
|
}
|
|
|
|
Napi::Value NodeModelWrapper::StateSize(const Napi::CallbackInfo &info)
|
|
{
|
|
// Implement the binding for the stateSize method
|
|
return Napi::Number::New(info.Env(), static_cast<int64_t>(llmodel_get_state_size(GetInference())));
|
|
}
|
|
|
|
Napi::Array ChunkedFloatPtr(float *embedding_ptr, int embedding_size, int text_len, Napi::Env const &env)
|
|
{
|
|
auto n_embd = embedding_size / text_len;
|
|
// std::cout << "Embedding size: " << embedding_size << std::endl;
|
|
// std::cout << "Text length: " << text_len << std::endl;
|
|
// std::cout << "Chunk size (n_embd): " << n_embd << std::endl;
|
|
Napi::Array result = Napi::Array::New(env, text_len);
|
|
auto count = 0;
|
|
for (int i = 0; i < embedding_size; i += n_embd)
|
|
{
|
|
int end = std::min(i + n_embd, embedding_size);
|
|
// possible bounds error?
|
|
// Constructs a container with as many elements as the range [first,last), with each element emplace-constructed
|
|
// from its corresponding element in that range, in the same order.
|
|
std::vector<float> chunk(embedding_ptr + i, embedding_ptr + end);
|
|
Napi::Float32Array fltarr = Napi::Float32Array::New(env, chunk.size());
|
|
// I know there's a way to emplace the raw float ptr into a Napi::Float32Array but idk how and
|
|
// im too scared to cause memory issues
|
|
// this is goodenough
|
|
for (int j = 0; j < chunk.size(); j++)
|
|
{
|
|
|
|
fltarr.Set(j, chunk[j]);
|
|
}
|
|
result.Set(count++, fltarr);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
Napi::Value NodeModelWrapper::GenerateEmbedding(const Napi::CallbackInfo &info)
|
|
{
|
|
auto env = info.Env();
|
|
|
|
auto prefix = info[1];
|
|
auto dimensionality = info[2].As<Napi::Number>().Int32Value();
|
|
auto do_mean = info[3].As<Napi::Boolean>().Value();
|
|
auto atlas = info[4].As<Napi::Boolean>().Value();
|
|
size_t embedding_size;
|
|
size_t token_count = 0;
|
|
|
|
// This procedure can maybe be optimized but its whatever, i have too many intermediary structures
|
|
std::vector<std::string> text_arr;
|
|
bool is_single_text = false;
|
|
if (info[0].IsString())
|
|
{
|
|
is_single_text = true;
|
|
text_arr.push_back(info[0].As<Napi::String>().Utf8Value());
|
|
}
|
|
else
|
|
{
|
|
auto jsarr = info[0].As<Napi::Array>();
|
|
size_t len = jsarr.Length();
|
|
text_arr.reserve(len);
|
|
for (size_t i = 0; i < len; ++i)
|
|
{
|
|
std::string str = jsarr.Get(i).As<Napi::String>().Utf8Value();
|
|
text_arr.push_back(str);
|
|
}
|
|
}
|
|
std::vector<const char *> str_ptrs;
|
|
str_ptrs.reserve(text_arr.size() + 1);
|
|
for (size_t i = 0; i < text_arr.size(); ++i)
|
|
str_ptrs.push_back(text_arr[i].c_str());
|
|
str_ptrs.push_back(nullptr);
|
|
const char *_err = nullptr;
|
|
float *embeds = llmodel_embed(GetInference(), str_ptrs.data(), &embedding_size,
|
|
prefix.IsUndefined() ? nullptr : prefix.As<Napi::String>().Utf8Value().c_str(),
|
|
dimensionality, &token_count, do_mean, atlas, &_err);
|
|
if (!embeds)
|
|
{
|
|
// i dont wanna deal with c strings lol
|
|
std::string err(_err);
|
|
Napi::Error::New(env, err == "(unknown error)" ? "Unknown error: sorry bud" : err).ThrowAsJavaScriptException();
|
|
return env.Undefined();
|
|
}
|
|
auto embedmat = ChunkedFloatPtr(embeds, embedding_size, text_arr.size(), env);
|
|
|
|
llmodel_free_embedding(embeds);
|
|
auto res = Napi::Object::New(env);
|
|
res.Set("n_prompt_tokens", token_count);
|
|
if(is_single_text) {
|
|
res.Set("embeddings", embedmat.Get(static_cast<uint32_t>(0)));
|
|
} else {
|
|
res.Set("embeddings", embedmat);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* Generate a response using the model.
|
|
* @param prompt A string representing the input prompt.
|
|
* @param options Inference options.
|
|
*/
|
|
Napi::Value NodeModelWrapper::Infer(const Napi::CallbackInfo &info)
|
|
{
|
|
auto env = info.Env();
|
|
std::string prompt;
|
|
if (info[0].IsString())
|
|
{
|
|
prompt = info[0].As<Napi::String>().Utf8Value();
|
|
}
|
|
else
|
|
{
|
|
Napi::Error::New(info.Env(), "invalid string argument").ThrowAsJavaScriptException();
|
|
return info.Env().Undefined();
|
|
}
|
|
|
|
if (!info[1].IsObject())
|
|
{
|
|
Napi::Error::New(info.Env(), "Missing Prompt Options").ThrowAsJavaScriptException();
|
|
return info.Env().Undefined();
|
|
}
|
|
// defaults copied from python bindings
|
|
llmodel_prompt_context promptContext = {.logits = nullptr,
|
|
.tokens = nullptr,
|
|
.n_past = 0,
|
|
.n_ctx = nCtx,
|
|
.n_predict = 4096,
|
|
.top_k = 40,
|
|
.top_p = 0.9f,
|
|
.min_p = 0.0f,
|
|
.temp = 0.1f,
|
|
.n_batch = 8,
|
|
.repeat_penalty = 1.2f,
|
|
.repeat_last_n = 10,
|
|
.context_erase = 0.75};
|
|
|
|
PromptWorkerConfig promptWorkerConfig;
|
|
|
|
auto inputObject = info[1].As<Napi::Object>();
|
|
|
|
if (inputObject.Has("logits") || inputObject.Has("tokens"))
|
|
{
|
|
Napi::Error::New(info.Env(), "Invalid input: 'logits' or 'tokens' properties are not allowed")
|
|
.ThrowAsJavaScriptException();
|
|
return info.Env().Undefined();
|
|
}
|
|
|
|
// Assign the remaining properties
|
|
if (inputObject.Has("nPast") && inputObject.Get("nPast").IsNumber())
|
|
{
|
|
promptContext.n_past = inputObject.Get("nPast").As<Napi::Number>().Int32Value();
|
|
}
|
|
if (inputObject.Has("nPredict") && inputObject.Get("nPredict").IsNumber())
|
|
{
|
|
promptContext.n_predict = inputObject.Get("nPredict").As<Napi::Number>().Int32Value();
|
|
}
|
|
if (inputObject.Has("topK") && inputObject.Get("topK").IsNumber())
|
|
{
|
|
promptContext.top_k = inputObject.Get("topK").As<Napi::Number>().Int32Value();
|
|
}
|
|
if (inputObject.Has("topP") && inputObject.Get("topP").IsNumber())
|
|
{
|
|
promptContext.top_p = inputObject.Get("topP").As<Napi::Number>().FloatValue();
|
|
}
|
|
if (inputObject.Has("minP") && inputObject.Get("minP").IsNumber())
|
|
{
|
|
promptContext.min_p = inputObject.Get("minP").As<Napi::Number>().FloatValue();
|
|
}
|
|
if (inputObject.Has("temp") && inputObject.Get("temp").IsNumber())
|
|
{
|
|
promptContext.temp = inputObject.Get("temp").As<Napi::Number>().FloatValue();
|
|
}
|
|
if (inputObject.Has("nBatch") && inputObject.Get("nBatch").IsNumber())
|
|
{
|
|
promptContext.n_batch = inputObject.Get("nBatch").As<Napi::Number>().Int32Value();
|
|
}
|
|
if (inputObject.Has("repeatPenalty") && inputObject.Get("repeatPenalty").IsNumber())
|
|
{
|
|
promptContext.repeat_penalty = inputObject.Get("repeatPenalty").As<Napi::Number>().FloatValue();
|
|
}
|
|
if (inputObject.Has("repeatLastN") && inputObject.Get("repeatLastN").IsNumber())
|
|
{
|
|
promptContext.repeat_last_n = inputObject.Get("repeatLastN").As<Napi::Number>().Int32Value();
|
|
}
|
|
if (inputObject.Has("contextErase") && inputObject.Get("contextErase").IsNumber())
|
|
{
|
|
promptContext.context_erase = inputObject.Get("contextErase").As<Napi::Number>().FloatValue();
|
|
}
|
|
if (inputObject.Has("onPromptToken") && inputObject.Get("onPromptToken").IsFunction())
|
|
{
|
|
promptWorkerConfig.promptCallback = inputObject.Get("onPromptToken").As<Napi::Function>();
|
|
promptWorkerConfig.hasPromptCallback = true;
|
|
}
|
|
if (inputObject.Has("onResponseToken") && inputObject.Get("onResponseToken").IsFunction())
|
|
{
|
|
promptWorkerConfig.responseCallback = inputObject.Get("onResponseToken").As<Napi::Function>();
|
|
promptWorkerConfig.hasResponseCallback = true;
|
|
}
|
|
|
|
// copy to protect llmodel resources when splitting to new thread
|
|
// llmodel_prompt_context copiedPrompt = promptContext;
|
|
promptWorkerConfig.context = promptContext;
|
|
promptWorkerConfig.model = GetInference();
|
|
promptWorkerConfig.mutex = &inference_mutex;
|
|
promptWorkerConfig.prompt = prompt;
|
|
promptWorkerConfig.result = "";
|
|
|
|
promptWorkerConfig.promptTemplate = inputObject.Get("promptTemplate").As<Napi::String>();
|
|
if (inputObject.Has("special"))
|
|
{
|
|
promptWorkerConfig.special = inputObject.Get("special").As<Napi::Boolean>();
|
|
}
|
|
if (inputObject.Has("fakeReply"))
|
|
{
|
|
// this will be deleted in the worker
|
|
promptWorkerConfig.fakeReply = new std::string(inputObject.Get("fakeReply").As<Napi::String>().Utf8Value());
|
|
}
|
|
auto worker = new PromptWorker(env, promptWorkerConfig);
|
|
|
|
worker->Queue();
|
|
|
|
return worker->GetPromise();
|
|
}
|
|
void NodeModelWrapper::Dispose(const Napi::CallbackInfo &info)
|
|
{
|
|
llmodel_model_destroy(inference_);
|
|
}
|
|
void NodeModelWrapper::SetThreadCount(const Napi::CallbackInfo &info)
|
|
{
|
|
if (info[0].IsNumber())
|
|
{
|
|
llmodel_setThreadCount(GetInference(), info[0].As<Napi::Number>().Int64Value());
|
|
}
|
|
else
|
|
{
|
|
Napi::Error::New(info.Env(), "Could not set thread count: argument 1 is NaN").ThrowAsJavaScriptException();
|
|
return;
|
|
}
|
|
}
|
|
|
|
Napi::Value NodeModelWrapper::GetName(const Napi::CallbackInfo &info)
|
|
{
|
|
return Napi::String::New(info.Env(), name);
|
|
}
|
|
Napi::Value NodeModelWrapper::ThreadCount(const Napi::CallbackInfo &info)
|
|
{
|
|
return Napi::Number::New(info.Env(), llmodel_threadCount(GetInference()));
|
|
}
|
|
|
|
Napi::Value NodeModelWrapper::GetLibraryPath(const Napi::CallbackInfo &info)
|
|
{
|
|
return Napi::String::New(info.Env(), llmodel_get_implementation_search_path());
|
|
}
|
|
|
|
llmodel_model NodeModelWrapper::GetInference()
|
|
{
|
|
return inference_;
|
|
}
|
|
|
|
// Exports Bindings
|
|
Napi::Object Init(Napi::Env env, Napi::Object exports)
|
|
{
|
|
exports["LLModel"] = NodeModelWrapper::GetClass(env);
|
|
return exports;
|
|
}
|
|
|
|
NODE_API_MODULE(NODE_GYP_MODULE_NAME, Init)
|