mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2024-10-01 01:06:10 -04:00
f9deb87d20
This GGUF key is used by all llama.cpp models with upstream support.
146 lines
4.0 KiB
Python
Executable File
146 lines
4.0 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
from __future__ import annotations
|
|
|
|
import json
|
|
import struct
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
import gguf
|
|
import numpy as np
|
|
from sentencepiece import SentencePieceProcessor
|
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
if not 2 <= len(sys.argv) < 4:
|
|
print("Usage: {} dir-model [ftype]\n".format(Path(__file__).name))
|
|
print(" ftype == 0 -> float32")
|
|
print(" ftype == 1 -> float16")
|
|
sys.exit(1)
|
|
|
|
# output in the same directory as the model
|
|
dir_model = Path(sys.argv[1])
|
|
|
|
# possible data types
|
|
# ftype == 0 -> float32
|
|
# ftype == 1 -> float16
|
|
#
|
|
# map from ftype to string
|
|
ftype_str = ["f32", "f16"]
|
|
|
|
ftype = 1
|
|
if len(sys.argv) > 2:
|
|
ftype = int(sys.argv[2])
|
|
if ftype < 0 or ftype > 1:
|
|
print("Invalid ftype: " + str(ftype))
|
|
sys.exit(1)
|
|
|
|
fname_out = dir_model / ("ggml-replit-code-v1-3b-" + ftype_str[ftype] + ".gguf")
|
|
|
|
|
|
ARCH = gguf.MODEL_ARCH.MPT
|
|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
|
|
|
print("gguf: get model metadata")
|
|
|
|
config = AutoConfig(dir_model)
|
|
|
|
block_count = config.n_layers
|
|
gguf_writer.add_name("Replit")
|
|
gguf_writer.add_context_length(config.max_seq_len)
|
|
gguf_writer.add_embedding_length(config.d_model)
|
|
gguf_writer.add_block_count(block_count)
|
|
gguf_writer.add_feed_forward_length(4 * config.d_model)
|
|
gguf_writer.add_head_count(config.n_heads)
|
|
gguf_writer.add_max_alibi_bias(config.attn_config.alibi_bias_max)
|
|
gguf_writer.add_layer_norm_eps(config.layer_norm_epsilon)
|
|
gguf_writer.add_file_type(ftype)
|
|
|
|
clip_qkv = config.attn_config.clip_qkv
|
|
if clip_qkv is not None:
|
|
gguf_writer.add_clamp_kqv(clip_qkv)
|
|
|
|
print("gguf: get sentencepiece tokenizer vocab")
|
|
|
|
tokenizer = SentencePieceProcessor(str(dir_model / "spiece.model"))
|
|
#print(tokenizer.encode('I believe the meaning of life is'))
|
|
|
|
tokens: list[bytearray] = []
|
|
scores: list[float] = []
|
|
toktypes: list[int] = []
|
|
|
|
for i in range(tokenizer.vocab_size()):
|
|
tokens.append(tokenizer.id_to_piece(i).encode('utf-8'))
|
|
scores.append(tokenizer.get_score(i))
|
|
|
|
toktype = gguf.TokenType.NORMAL
|
|
if tokenizer.is_unknown(i):
|
|
toktype = gguf.TokenType.UNKNOWN
|
|
elif tokenizer.is_control(i):
|
|
toktype = gguf.TokenType.CONTROL
|
|
elif tokenizer.is_unused(i):
|
|
toktype = gguf.TokenType.UNUSED
|
|
elif tokenizer.is_byte(i):
|
|
toktype = gguf.TokenType.BYTE
|
|
|
|
toktypes.append(toktype)
|
|
|
|
gguf_writer.add_tokenizer_model("llama") # sentencepiece
|
|
gguf_writer.add_token_list(tokens)
|
|
gguf_writer.add_token_scores(scores)
|
|
gguf_writer.add_token_types(toktypes)
|
|
|
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
|
|
special_vocab.add_to_gguf(gguf_writer)
|
|
|
|
print("gguf: get tensor metadata")
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(dir_model, config=config, low_cpu_mem_usage=True)
|
|
#print(model)
|
|
|
|
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
|
|
|
|
list_vars = model.state_dict()
|
|
for name in list_vars.keys():
|
|
print(name, list_vars[name].shape, list_vars[name].dtype)
|
|
|
|
print(config)
|
|
|
|
for name in list_vars.keys():
|
|
data = list_vars[name].squeeze().numpy()
|
|
print("Processing variable:", name, "with shape:", data.shape)
|
|
|
|
n_dims = len(data.shape)
|
|
|
|
# ftype == 0 -> float32, ftype == 1 -> float16
|
|
ftype_cur = 0
|
|
if ftype == 1 and name[-7:] == ".weight" and n_dims == 2:
|
|
print(" Converting to float16")
|
|
data = data.astype(np.float16)
|
|
ftype_cur = 1
|
|
elif ftype == 1 or data.dtype != np.float32:
|
|
print(" Converting to float32")
|
|
data = data.astype(np.float32)
|
|
ftype_cur = 0
|
|
|
|
# map tensor names
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
|
if new_name is None:
|
|
print("Can not map tensor '" + name + "'")
|
|
sys.exit()
|
|
|
|
gguf_writer.add_tensor(new_name, data)
|
|
|
|
|
|
print("gguf: write header")
|
|
gguf_writer.write_header_to_file()
|
|
print("gguf: write metadata")
|
|
gguf_writer.write_kv_data_to_file()
|
|
print("gguf: write tensors")
|
|
gguf_writer.write_tensors_to_file()
|
|
|
|
gguf_writer.close()
|
|
|
|
print(f"gguf: model successfully exported to '{fname_out}'")
|
|
print()
|