#include "gptj.h" #include "llama.cpp/ggml.h" #include "utils.h" #include #include #include #include #include #include #include #include #include #if defined(_WIN32) && defined(_MSC_VER) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX #define NOMINMAX #endif #include #include #include #else #include #endif #include #include // default hparams (GPT-J 6B) static const size_t MB = 1024*1024; struct gptj_hparams { int32_t n_vocab = 50400; int32_t n_ctx = 2048; int32_t n_embd = 4096; int32_t n_head = 16; int32_t n_layer = 28; int32_t n_rot = 64; int32_t f16 = 1; }; struct gptj_layer { // normalization struct ggml_tensor * ln_1_g; struct ggml_tensor * ln_1_b; // attention struct ggml_tensor * c_attn_q_proj_w; struct ggml_tensor * c_attn_k_proj_w; struct ggml_tensor * c_attn_v_proj_w; struct ggml_tensor * c_attn_proj_w; // ff struct ggml_tensor * c_mlp_fc_w; struct ggml_tensor * c_mlp_fc_b; struct ggml_tensor * c_mlp_proj_w; struct ggml_tensor * c_mlp_proj_b; }; struct gptj_buffer { uint8_t * addr = NULL; size_t size = 0; void resize(size_t size) { delete[] addr; addr = new uint8_t[size]; this->size = size; } ~gptj_buffer() { fflush(stdout); delete[] addr; } }; struct gptj_kv_cache { struct ggml_tensor * k; struct ggml_tensor * v; struct ggml_context * ctx = NULL; gptj_buffer buf; int n; // number of tokens currently in the cache ~gptj_kv_cache() { if (ctx) { ggml_free(ctx); } } }; struct gptj_model { gptj_hparams hparams; // normalization struct ggml_tensor * ln_f_g; struct ggml_tensor * ln_f_b; struct ggml_tensor * wte; // position embedding struct ggml_tensor * lmh_g; // language model head struct ggml_tensor * lmh_b; // language model bias std::vector layers; // key + value memory struct gptj_kv_cache kv_self; // struct ggml_context * ctx; std::map tensors; gptj_buffer buf; ~gptj_model() { if (ctx) { ggml_free(ctx); } } }; static bool kv_cache_init( const struct gptj_hparams & hparams, struct gptj_kv_cache & cache, ggml_type wtype, int n_ctx) { const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int64_t n_mem = (int64_t)n_layer*n_ctx; const int64_t n_elements = n_embd*n_mem; cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); struct ggml_init_params params; params.mem_size = cache.buf.size; params.mem_buffer = cache.buf.addr; params.no_alloc = false; cache.ctx = ggml_init(params); if (!cache.ctx) { fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); return false; } cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); return true; } // load the model's weights from a stream bool gptj_model_load(const std::string &fname, std::istream &fin, gptj_model & model, gpt_vocab & vocab) { printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str()); // verify magic { uint32_t magic; fin.read((char *) &magic, sizeof(magic)); if (magic != 0x67676d6c) { fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); return false; } } // load hparams { auto & hparams = model.hparams; fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); fin.read((char *) &hparams.n_head, sizeof(hparams.n_head)); fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot)); fin.read((char *) &hparams.f16, sizeof(hparams.f16)); printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); printf("%s: n_embd = %d\n", __func__, hparams.n_embd); printf("%s: n_head = %d\n", __func__, hparams.n_head); printf("%s: n_layer = %d\n", __func__, hparams.n_layer); printf("%s: n_rot = %d\n", __func__, hparams.n_rot); printf("%s: f16 = %d\n", __func__, hparams.f16); } // load vocab { int32_t n_vocab = 0; fin.read((char *) &n_vocab, sizeof(n_vocab)); if (n_vocab != model.hparams.n_vocab) { fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); return false; } std::string word; for (int i = 0; i < n_vocab; i++) { uint32_t len; fin.read((char *) &len, sizeof(len)); word.resize(len); fin.read((char *) word.data(), len); vocab.token_to_id[word] = i; vocab.id_to_token[i] = word; } } // for the big tensors, we have the option to store the data in 16-bit floats or quantized // in order to save memory and also to speed up the computation ggml_type wtype = GGML_TYPE_COUNT; switch (model.hparams.f16) { case 0: wtype = GGML_TYPE_F32; break; case 1: wtype = GGML_TYPE_F16; break; case 2: wtype = GGML_TYPE_Q4_0; break; case 3: wtype = GGML_TYPE_Q4_1; break; case 5: wtype = GGML_TYPE_Q4_2; break; default: { fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n", __func__, fname.c_str(), model.hparams.f16); return false; } } const ggml_type wtype2 = GGML_TYPE_F32; auto & ctx = model.ctx; size_t ctx_size = 0; { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // wte ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // lmh_g ctx_size += n_vocab*ggml_type_sizef(GGML_TYPE_F32); // lmh_b ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_q_proj_w ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_k_proj_w ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_v_proj_w ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v ctx_size += (5 + 10*n_layer)*256; // object overhead printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); } // create the ggml context { struct ggml_init_params params = { .mem_size = ctx_size, .mem_buffer = NULL, }; model.ctx = ggml_init(params); if (!model.ctx) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); return false; } } // prepare memory for the weights { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; model.layers.resize(n_layer); model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model.lmh_g = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); model.lmh_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_vocab); // map by name model.tensors["transformer.wte.weight"] = model.wte; model.tensors["transformer.ln_f.weight"] = model.ln_f_g; model.tensors["transformer.ln_f.bias"] = model.ln_f_b; model.tensors["lm_head.weight"] = model.lmh_g; model.tensors["lm_head.bias"] = model.lmh_b; for (int i = 0; i < n_layer; ++i) { auto & layer = model.layers[i]; layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.c_attn_q_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.c_attn_k_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.c_attn_v_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd); layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd); layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd); layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // map by name model.tensors["transformer.h." + std::to_string(i) + ".ln_1.weight"] = layer.ln_1_g; model.tensors["transformer.h." + std::to_string(i) + ".ln_1.bias"] = layer.ln_1_b; model.tensors["transformer.h." + std::to_string(i) + ".attn.q_proj.weight"] = layer.c_attn_q_proj_w; model.tensors["transformer.h." + std::to_string(i) + ".attn.k_proj.weight"] = layer.c_attn_k_proj_w; model.tensors["transformer.h." + std::to_string(i) + ".attn.v_proj.weight"] = layer.c_attn_v_proj_w; model.tensors["transformer.h." + std::to_string(i) + ".attn.out_proj.weight"] = layer.c_attn_proj_w; model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.weight"] = layer.c_mlp_fc_w; model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.bias"] = layer.c_mlp_fc_b; model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.weight"] = layer.c_mlp_proj_w; model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.bias"] = layer.c_mlp_proj_b; } } // key + value memory { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_mem = n_layer*n_ctx; const int n_elements = n_embd*n_mem; if (!kv_cache_init(hparams, model.kv_self, GGML_TYPE_F16, model.hparams.n_ctx)) { fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__); ggml_free(ctx); return false; } const size_t memory_size = ggml_nbytes(model.kv_self.k) + ggml_nbytes(model.kv_self.v); printf("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); } // load weights { int n_tensors = 0; size_t total_size = 0; printf("%s: ", __func__); while (true) { int32_t n_dims; int32_t length; int32_t ftype; fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); fin.read(reinterpret_cast(&length), sizeof(length)); fin.read(reinterpret_cast(&ftype), sizeof(ftype)); if (fin.eof()) { break; } int32_t nelements = 1; int32_t ne[2] = { 1, 1 }; for (int i = 0; i < n_dims; ++i) { fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); fin.read(&name[0], length); if (model.tensors.find(name.data()) == model.tensors.end()) { fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); return false; } auto tensor = model.tensors[name.data()]; if (ggml_nelements(tensor) != nelements) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); return false; } if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%lu, %lu], expected [%d, %d]\n", __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]); return false; } if (0) { static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", }; printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ftype_str[ftype], ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor)); } size_t bpe = 0; switch (ftype) { case 0: bpe = ggml_type_size(GGML_TYPE_F32); break; case 1: bpe = ggml_type_size(GGML_TYPE_F16); break; case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break; case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break; default: { fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype); return false; } }; if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); return false; } fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); //printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); total_size += ggml_nbytes(tensor); if (++n_tensors % 8 == 0) { printf("."); fflush(stdout); } } printf(" done\n"); printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors); } return true; } // load the model's weights from a file path bool gptj_model_load(const std::string & fname, gptj_model & model, gpt_vocab & vocab) { auto fin = std::ifstream(fname, std::ios::binary); if (!fin) { fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); return false; } bool loaded = gptj_model_load(fname, fin, model, vocab); fin.close(); return loaded; } // evaluate the transformer // // - model: the model // - n_threads: number of threads to use // - n_past: the context size so far // - embd_inp: the embeddings of the tokens in the context // - embd_w: the predicted logits for the next token // // The GPT-J model requires about 16MB of memory per input token. // bool gptj_eval( gptj_model & model, const int n_threads, const int n_past, const std::vector & embd_inp, std::vector & embd_w, size_t & mem_per_token) { const int N = embd_inp.size(); const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_head = hparams.n_head; const int n_vocab = hparams.n_vocab; const int n_rot = hparams.n_rot; const int d_key = n_embd/n_head; const size_t init_buf_size = 1024u*MB; if (!model.buf.addr || model.buf.size < init_buf_size) model.buf.resize(init_buf_size); if (mem_per_token > 0 && mem_per_token*N > model.buf.size) { const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, model.buf.size, buf_size_new); // reallocate model.buf.resize(buf_size_new); if (model.buf.addr == nullptr) { fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, model.buf.size); return false; } } struct ggml_init_params params = { .mem_size = model.buf.size, .mem_buffer = model.buf.addr, }; struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph gf = { .n_threads = n_threads }; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); // wte struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * cur; // norm { cur = ggml_norm(ctx0, inpL); // cur = ln_1_g*cur + ln_1_b cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_1_g, cur), cur), ggml_repeat(ctx0, model.layers[il].ln_1_b, cur)); } struct ggml_tensor * inpSA = cur; // self-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].c_attn_q_proj_w, cur); struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].c_attn_k_proj_w, cur); struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].c_attn_v_proj_w, cur); // store key and value to memory { struct ggml_tensor * k = ggml_view_1d(ctx0, model.kv_self.k, N*n_embd, (ggml_element_size(model.kv_self.k)*n_embd)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_1d(ctx0, model.kv_self.v, N*n_embd, (ggml_element_size(model.kv_self.v)*n_embd)*(il*n_ctx + n_past)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); } // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) struct ggml_tensor * Q = ggml_permute(ctx0, ggml_rope(ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)), n_past, n_rot, 0), 0, 2, 1, 3); // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3) struct ggml_tensor * K = ggml_permute(ctx0, ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.kv_self.k)*n_embd), n_embd/n_head, n_head, n_past + N), n_past, n_rot, 1), 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head)) ); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() struct ggml_tensor * V_trans = ggml_cpy(ctx0, ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.kv_self.v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.kv_self.v)*n_embd), n_embd/n_head, n_head, n_past + N), 1, 2, 0, 3), ggml_new_tensor_3d(ctx0, model.kv_self.v->type, n_past + N, n_embd/n_head, n_head)); // KQV = transpose(V) * KQ_soft_max struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_embd, N) cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection (no bias) cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_proj_w, cur); } struct ggml_tensor * inpFF = cur; // feed-forward network // this is independent of the self-attention result, so it could be done in parallel to the self-attention { // note here we pass inpSA instead of cur cur = ggml_mul_mat(ctx0, model.layers[il].c_mlp_fc_w, inpSA); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur), cur); // GELU activation cur = ggml_gelu(ctx0, cur); // projection // cur = proj_w*cur + proj_b cur = ggml_mul_mat(ctx0, model.layers[il].c_mlp_proj_w, cur); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur), cur); } // self-attention + FF cur = ggml_add(ctx0, cur, inpFF); // input for next layer inpL = ggml_add(ctx0, cur, inpL); } // norm { inpL = ggml_norm(ctx0, inpL); // inpL = ln_f_g*inpL + ln_f_b inpL = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.ln_f_g, inpL), inpL), ggml_repeat(ctx0, model.ln_f_b, inpL)); } // lm_head { inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL); inpL = ggml_add(ctx0, ggml_repeat(ctx0, model.lmh_b, inpL), inpL); } // logits -> probs //inpL = ggml_soft_max(ctx0, inpL); // run the computation ggml_build_forward_expand(&gf, inpL); ggml_graph_compute (ctx0, &gf); //if (n_past%100 == 0) { // ggml_graph_print (&gf); // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot"); //} //embd_w.resize(n_vocab*N); //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N); // return result for just the last token embd_w.resize(n_vocab); memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); if (mem_per_token == 0) { mem_per_token = ggml_used_mem(ctx0)/N; } //printf("used_mem = %zu\n", ggml_used_mem(ctx0)); ggml_free(ctx0); return true; } #define GPTJ_MAX_RNG_STATE 64*1024 size_t gptj_get_state_size(const gptj_model &model) { // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state. // for reference, std::mt19937(1337) serializes to 6701 bytes. const size_t s_rng_size = sizeof(size_t); const size_t s_rng = GPTJ_MAX_RNG_STATE; const size_t s_kv_size = sizeof(size_t); const size_t s_kv_ntok = sizeof(int); const size_t s_kv = model.kv_self.buf.size; const size_t s_total = ( + s_rng_size + s_rng + s_kv_size + s_kv_ntok + s_kv ); fflush(stdout); return s_total; } size_t gptj_copy_state_data(const gptj_model &model, const std::mt19937 &rng, uint8_t *dest) { uint8_t * out = dest; fflush(stdout); // copy rng { std::stringstream rng_ss; rng_ss << rng; const size_t rng_size = rng_ss.str().size(); char rng_buf[GPTJ_MAX_RNG_STATE]; memset(&rng_buf[0], 0, GPTJ_MAX_RNG_STATE); memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size()); memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size); memcpy(out, &rng_buf[0], GPTJ_MAX_RNG_STATE); out += GPTJ_MAX_RNG_STATE; } // copy kv cache { const size_t kv_size = model.kv_self.buf.size; const int kv_ntok = model.kv_self.n; memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size); memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok); if (kv_size) { memcpy(out, model.kv_self.buf.addr, kv_size); out += kv_size; } } const size_t written = out - dest; const size_t expected = gptj_get_state_size(model); assert(written == expected); fflush(stdout); return written; } size_t gptj_set_state_data(gptj_model *model, std::mt19937 *rng, const uint8_t *src) { const uint8_t * in = src; // set rng { size_t rng_size; char rng_buf[GPTJ_MAX_RNG_STATE]; memcpy(&rng_size, in, sizeof(rng_size)); in += sizeof(rng_size); memcpy(&rng_buf[0], in, GPTJ_MAX_RNG_STATE); in += GPTJ_MAX_RNG_STATE; std::stringstream rng_ss; rng_ss.str(std::string(&rng_buf[0], rng_size)); rng_ss >> *rng; assert(rng_ss.fail() == false); } // set kv cache { size_t kv_size; int kv_ntok; memcpy(&kv_size, in, sizeof(kv_size)); in += sizeof(kv_size); memcpy(&kv_ntok, in, sizeof(kv_ntok)); in += sizeof(kv_ntok); if (kv_size) { assert(model->kv_self.buf.size == kv_size); void * k_data = model->kv_self.k->data; // remember data pointers void * v_data = model->kv_self.v->data; // because their value is stored in buf and overwritten by memcpy memcpy(model->kv_self.buf.addr, in, kv_size); in += kv_size; model->kv_self.k->data = k_data; // restore correct data pointers model->kv_self.v->data = v_data; } model->kv_self.n = kv_ntok; } const size_t nread = in - src; const size_t expected = gptj_get_state_size(*model); assert(nread == expected); fflush(stdout); return nread; } struct GPTJPrivate { const std::string modelPath; bool modelLoaded; gpt_vocab vocab; gptj_model *model = nullptr; int64_t n_threads = 0; size_t mem_per_token = 0; std::mt19937 rng; }; GPTJ::GPTJ() : d_ptr(new GPTJPrivate) { d_ptr->model = new gptj_model; d_ptr->modelLoaded = false; } bool GPTJ::loadModel(const std::string &modelPath) { std::mt19937 rng(time(NULL)); d_ptr->rng = rng; auto fin = std::ifstream(modelPath, std::ios::binary); // load the model if (!gptj_model_load(modelPath, fin, *d_ptr->model, d_ptr->vocab)) { std::cerr << "GPT-J ERROR: failed to load model from " << modelPath; return false; } d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); d_ptr->modelLoaded = true; fflush(stdout); return true; } void GPTJ::setThreadCount(int32_t n_threads) { d_ptr->n_threads = n_threads; } int32_t GPTJ::threadCount() const { return d_ptr->n_threads; } GPTJ::~GPTJ() { delete d_ptr->model; } bool GPTJ::isModelLoaded() const { return d_ptr->modelLoaded; } size_t GPTJ::stateSize() const { return gptj_get_state_size(*d_ptr->model); } size_t GPTJ::saveState(uint8_t *dest) const { return gptj_copy_state_data(*d_ptr->model, d_ptr->rng, dest); } size_t GPTJ::restoreState(const uint8_t *src) { return gptj_set_state_data(d_ptr->model, &d_ptr->rng, src); } void GPTJ::prompt(const std::string &prompt, std::function promptCallback, std::function responseCallback, std::function recalculateCallback, PromptContext &promptCtx) { if (!isModelLoaded()) { std::cerr << "GPT-J ERROR: prompt won't work with an unloaded model!\n"; return; } const int64_t t_main_start_us = ggml_time_us(); int64_t t_sample_us = 0; int64_t t_predict_us = 0; int64_t t_prompt_us = 0; // tokenize the prompt std::vector embd_inp = ::gpt_tokenize(d_ptr->vocab, prompt); // save the context size promptCtx.n_ctx = d_ptr->model->hparams.n_ctx; if ((int) embd_inp.size() > promptCtx.n_ctx - 4) { responseCallback(-1, "ERROR: The prompt size exceeds the context window size and cannot be processed."); std::cerr << "GPT-J ERROR: The prompt is" << embd_inp.size() << "tokens and the context window is" << promptCtx.n_ctx << "!\n"; return; } promptCtx.n_predict = std::min(promptCtx.n_predict, promptCtx.n_ctx - (int) embd_inp.size()); promptCtx.n_past = std::min(promptCtx.n_past, promptCtx.n_ctx); // determine the required inference memory per token: static bool initialized = false; static std::vector p_instruct; static std::vector r_instruct; if (!initialized) { gptj_eval(*d_ptr->model, d_ptr->n_threads, 0, { 0, 1, 2, 3 }, promptCtx.logits, d_ptr->mem_per_token); initialized = true; } // process the prompt in batches size_t i = 0; const int64_t t_start_prompt_us = ggml_time_us(); while (i < embd_inp.size()) { size_t batch_end = std::min(i + promptCtx.n_batch, embd_inp.size()); std::vector batch(embd_inp.begin() + i, embd_inp.begin() + batch_end); // Check if the context has run out... if (promptCtx.n_past + batch.size() > promptCtx.n_ctx) { const int32_t erasePoint = promptCtx.n_ctx * promptCtx.contextErase; // Erase the first percentage of context from the tokens... std::cerr << "GPTJ: reached the end of the context window so resizing\n"; promptCtx.tokens.erase(promptCtx.tokens.begin(), promptCtx.tokens.begin() + erasePoint); promptCtx.n_past = promptCtx.tokens.size(); recalculateContext(promptCtx, recalculateCallback); assert(promptCtx.n_past + batch.size() <= promptCtx.n_ctx); } if (!gptj_eval(*d_ptr->model, d_ptr->n_threads, promptCtx.n_past, batch, promptCtx.logits, d_ptr->mem_per_token)) { std::cerr << "GPT-J ERROR: Failed to process prompt\n"; return; } size_t tokens = batch_end - i; for (size_t t = 0; t < tokens; ++t) { if (promptCtx.tokens.size() == promptCtx.n_ctx) promptCtx.tokens.erase(promptCtx.tokens.begin()); promptCtx.tokens.push_back(batch.at(t)); if (!promptCallback(batch.at(t))) return; } promptCtx.n_past += batch.size(); i = batch_end; } t_prompt_us += ggml_time_us() - t_start_prompt_us; int p_instructFound = 0; int r_instructFound = 0; std::string cachedResponse; std::vector cachedTokens; std::unordered_set reversePrompts = { "### Instruction", "### Prompt", "### Response", "### Human", "### Assistant" }; // predict next tokens int32_t totalPredictions = 0; for (int i = 0; i < promptCtx.n_predict; i++) { // sample next token const int n_vocab = d_ptr->model->hparams.n_vocab; gpt_vocab::id id = 0; { const int64_t t_start_sample_us = ggml_time_us(); const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size()); id = gpt_sample_top_k_top_p(d_ptr->vocab, n_vocab, promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks, n_prev_toks, promptCtx.logits, promptCtx.top_k, promptCtx.top_p, promptCtx.temp, promptCtx.repeat_penalty, d_ptr->rng); t_sample_us += ggml_time_us() - t_start_sample_us; } // Check if the context has run out... if (promptCtx.n_past + 1 > promptCtx.n_ctx) { const int32_t erasePoint = promptCtx.n_ctx * promptCtx.contextErase; // Erase the first percentage of context from the tokens... std::cerr << "GPTJ: reached the end of the context window so resizing\n"; promptCtx.tokens.erase(promptCtx.tokens.begin(), promptCtx.tokens.begin() + erasePoint); promptCtx.n_past = promptCtx.tokens.size(); recalculateContext(promptCtx, recalculateCallback); assert(promptCtx.n_past + 1 <= promptCtx.n_ctx); } const int64_t t_start_predict_us = ggml_time_us(); if (!gptj_eval(*d_ptr->model, d_ptr->n_threads, promptCtx.n_past, { id }, promptCtx.logits, d_ptr->mem_per_token)) { std::cerr << "GPT-J ERROR: Failed to predict next token\n"; return; } t_predict_us += ggml_time_us() - t_start_predict_us; promptCtx.n_past += 1; // display text ++totalPredictions; if (id == 50256 /*end of text*/) goto stop_generating; const std::string str = d_ptr->vocab.id_to_token[id]; // Check if the provided str is part of our reverse prompts bool foundPartialReversePrompt = false; const std::string completed = cachedResponse + str; if (reversePrompts.find(completed) != reversePrompts.end()) { goto stop_generating; } // Check if it partially matches our reverse prompts and if so, cache for (auto s : reversePrompts) { if (s.compare(0, completed.size(), completed) == 0) { foundPartialReversePrompt = true; cachedResponse = completed; break; } } // Regardless the token gets added to our cache cachedTokens.push_back(id); // Continue if we have found a partial match if (foundPartialReversePrompt) continue; // Empty the cache for (auto t : cachedTokens) { if (promptCtx.tokens.size() == promptCtx.n_ctx) promptCtx.tokens.erase(promptCtx.tokens.begin()); promptCtx.tokens.push_back(t); if (!responseCallback(t, d_ptr->vocab.id_to_token[t])) goto stop_generating; } cachedTokens.clear(); } stop_generating: #if 0 // report timing { const int64_t t_main_end_us = ggml_time_us(); std::cout << "GPT-J INFO: mem per token = " << mem_per_token << " bytes\n"; std::cout << "GPT-J INFO: sample time = " << t_sample_us/1000.0f << " ms\n"; std::cout << "GPT-J INFO: prompt time = " << t_prompt_us/1000.0f << " ms\n"; std::cout << "GPT-J INFO: predict time = " << t_predict_us/1000.0f << " ms / " << t_predict_us/1000.0f/totalPredictions << " ms per token\n"; std::cout << "GPT-J INFO: total time = " << (t_main_end_us - t_main_start_us)/1000.0f << " ms\n"; fflush(stdout); } #endif return; } void GPTJ::recalculateContext(PromptContext &promptCtx, std::function recalculate) { size_t i = 0; promptCtx.n_past = 0; while (i < promptCtx.tokens.size()) { size_t batch_end = std::min(i + promptCtx.n_batch, promptCtx.tokens.size()); std::vector batch(promptCtx.tokens.begin() + i, promptCtx.tokens.begin() + batch_end); assert(promptCtx.n_past + batch.size() <= promptCtx.n_ctx); if (!gptj_eval(*d_ptr->model, d_ptr->n_threads, promptCtx.n_past, batch, promptCtx.logits, d_ptr->mem_per_token)) { std::cerr << "GPTJ ERROR: Failed to process prompt\n"; goto stop_generating; } promptCtx.n_past += batch.size(); if (!recalculate(true)) goto stop_generating; i = batch_end; } assert(promptCtx.n_past == promptCtx.tokens.size()); stop_generating: recalculate(false); }