#ifndef LLMODEL_H #define LLMODEL_H #include #include #include #include #include #include #include #include #define LLMODEL_MAX_PROMPT_BATCH 128 class Dlhandle; class LLModel { public: using Token = int32_t; struct GPUDevice { int index; int type; size_t heapSize; std::string name; std::string vendor; GPUDevice(int index, int type, size_t heapSize, std::string name, std::string vendor): index(index), type(type), heapSize(heapSize), name(std::move(name)), vendor(std::move(vendor)) {} }; class Implementation { public: Implementation(const Implementation &) = delete; Implementation(Implementation &&); ~Implementation(); std::string_view modelType() const { return m_modelType; } std::string_view buildVariant() const { return m_buildVariant; } static LLModel *construct(const std::string &modelPath, std::string buildVariant = "auto", int n_ctx = 2048); static std::vector availableGPUDevices(size_t memoryRequired = 0); static int32_t maxContextLength(const std::string &modelPath); static int32_t layerCount(const std::string &modelPath); static bool isEmbeddingModel(const std::string &modelPath); static void setImplementationsSearchPath(const std::string &path); static const std::string &implementationsSearchPath(); static bool hasSupportedCPU(); private: Implementation(Dlhandle &&); static const std::vector &implementationList(); static const Implementation *implementation(const char *fname, const std::string &buildVariant); static LLModel *constructDefaultLlama(); bool (*m_magicMatch)(const char *fname); LLModel *(*m_construct)(); std::string_view m_modelType; std::string_view m_buildVariant; Dlhandle *m_dlhandle; }; struct PromptContext { std::vector logits; // logits of current context std::vector tokens; // current tokens in the context window int32_t n_past = 0; // number of tokens in past conversation int32_t n_ctx = 0; // number of tokens possible in context window int32_t n_predict = 200; int32_t top_k = 40; float top_p = 0.9f; float min_p = 0.0f; float temp = 0.9f; int32_t n_batch = 9; float repeat_penalty = 1.10f; int32_t repeat_last_n = 64; // last n tokens to penalize float contextErase = 0.75f; // percent of context to erase if we exceed the context window int32_t n_last_batch_tokens = 0; }; using ProgressCallback = std::function; explicit LLModel() {} virtual ~LLModel() {} virtual bool supportsEmbedding() const = 0; virtual bool supportsCompletion() const = 0; virtual bool loadModel(const std::string &modelPath, int n_ctx, int ngl) = 0; virtual bool isModelBlacklisted(const std::string &modelPath) const { (void)modelPath; return false; }; virtual bool isEmbeddingModel(const std::string &modelPath) const { (void)modelPath; return false; } virtual bool isModelLoaded() const = 0; virtual size_t requiredMem(const std::string &modelPath, int n_ctx, int ngl) = 0; virtual size_t stateSize() const { return 0; } virtual size_t saveState(uint8_t *dest) const { (void)dest; return 0; } virtual size_t restoreState(const uint8_t *src) { (void)src; return 0; } // This method requires the model to return true from supportsCompletion otherwise it will throw // an error virtual void prompt(const std::string &prompt, const std::string &promptTemplate, std::function promptCallback, std::function responseCallback, std::function recalculateCallback, PromptContext &ctx, bool special = false, std::string *fakeReply = nullptr); using EmbedCancelCallback = bool(unsigned *batchSizes, unsigned nBatch, const char *backend); virtual size_t embeddingSize() const { throw std::logic_error(std::string(implementation().modelType()) + " does not support embeddings"); } // user-specified prefix virtual void embed(const std::vector &texts, float *embeddings, std::optional prefix, int dimensionality = -1, size_t *tokenCount = nullptr, bool doMean = true, bool atlas = false, EmbedCancelCallback *cancelCb = nullptr); // automatic prefix virtual void embed(const std::vector &texts, float *embeddings, bool isRetrieval, int dimensionality = -1, size_t *tokenCount = nullptr, bool doMean = true, bool atlas = false); virtual void setThreadCount(int32_t n_threads) { (void)n_threads; } virtual int32_t threadCount() const { return 1; } const Implementation &implementation() const { return *m_implementation; } virtual std::vector availableGPUDevices(size_t memoryRequired) const { (void)memoryRequired; return {}; } virtual bool initializeGPUDevice(size_t memoryRequired, const std::string &name) const { (void)memoryRequired; (void)name; return false; } virtual bool initializeGPUDevice(int device, std::string *unavail_reason = nullptr) const { (void)device; if (unavail_reason) { *unavail_reason = "model has no GPU support"; } return false; } virtual bool hasGPUDevice() const { return false; } virtual bool usingGPUDevice() const { return false; } virtual const char *backendName() const { return "cpu"; } virtual const char *gpuDeviceName() const { return nullptr; } void setProgressCallback(ProgressCallback callback) { m_progressCallback = callback; } protected: // These are pure virtual because subclasses need to implement as the default implementation of // 'prompt' above calls these functions virtual std::vector tokenize(PromptContext &ctx, const std::string &str, bool special = false) const = 0; virtual std::string tokenToString(Token id) const = 0; virtual Token sampleToken(PromptContext &ctx) const = 0; virtual bool evalTokens(PromptContext &ctx, const std::vector &tokens) const = 0; virtual int32_t contextLength() const = 0; virtual const std::vector &endTokens() const = 0; virtual bool shouldAddBOS() const = 0; virtual int32_t maxContextLength(std::string const &modelPath) const { (void)modelPath; return -1; } virtual int32_t layerCount(std::string const &modelPath) const { (void)modelPath; return -1; } // This is a helper function called from the default implementation of 'prompt' but it can be // shared by all base classes so it isn't virtual void recalculateContext(PromptContext &promptCtx, std::function recalculate); const Implementation *m_implementation = nullptr; ProgressCallback m_progressCallback; static bool staticProgressCallback(float progress, void* ctx) { LLModel* model = static_cast(ctx); if (model && model->m_progressCallback) return model->m_progressCallback(progress); return true; } void decodePrompt(std::function promptCallback, std::function responseCallback, std::function recalculateCallback, PromptContext &promptCtx, std::vector embd_inp); void generateResponse(std::function responseCallback, std::function recalculateCallback, PromptContext &promptCtx); private: friend class LLMImplementation; }; #endif // LLMODEL_H