#define LLAMAMODEL_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE #include "llamamodel_impl.h" #include #include #include #include #include #include #include #include #include #if defined(_WIN32) && defined(_MSC_VER) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX #define NOMINMAX #endif #include #include #include #else #include #endif #include #include #include #include #include #ifdef GGML_USE_KOMPUTE #include "ggml-vulkan.h" #endif namespace { const char *modelType_ = "LLaMA"; } static bool llama_verbose() { const char* var = getenv("GPT4ALL_VERBOSE_LLAMACPP"); return var && *var; } static void llama_log_callback(enum ggml_log_level level, const char *text, void *userdata) { (void)userdata; if (llama_verbose() || level <= GGML_LOG_LEVEL_ERROR) { fputs(text, stderr); } } struct gpt_params { int32_t seed = -1; // RNG seed int32_t n_keep = 0; // number of tokens to keep from initial prompt // sampling parameters float tfs_z = 1.0f; // 1.0 = disabled float typical_p = 1.0f; // 1.0 = disabled std::string prompt = ""; bool memory_f16 = true; // use f16 instead of f32 for memory kv bool use_mmap = true; // use mmap for faster loads bool use_mlock = false; // use mlock to keep model in memory }; static int llama_sample_top_p_top_k( llama_context *ctx, const llama_token *last_n_tokens_data, int last_n_tokens_size, int top_k, float top_p, float temp, float repeat_penalty) { auto logits = llama_get_logits(ctx); auto n_vocab = llama_n_vocab(ctx); // Populate initial list of all candidates std::vector candidates; candidates.reserve(n_vocab); for (int token_id = 0; token_id < n_vocab; token_id++) { candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); } llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false}; // Sample repeat penalty llama_sample_repetition_penalty(nullptr, &candidates_p, last_n_tokens_data, last_n_tokens_size, repeat_penalty); // Temperature sampling llama_sample_top_k(ctx, &candidates_p, top_k, 1); llama_sample_tail_free(ctx, &candidates_p, 1.0f, 1); llama_sample_typical(ctx, &candidates_p, 1.0f, 1); llama_sample_top_p(ctx, &candidates_p, top_p, 1); llama_sample_temperature(ctx, &candidates_p, temp); return llama_sample_token(ctx, &candidates_p); } struct LLamaPrivate { const std::string modelPath; bool modelLoaded; llama_context *ctx = nullptr; llama_context_params params; int64_t n_threads = 0; std::vector end_tokens; }; LLamaModel::LLamaModel() : d_ptr(new LLamaPrivate) { d_ptr->modelLoaded = false; } // default hparams (LLaMA 7B) struct llama_file_hparams { uint32_t n_vocab = 32000; uint32_t n_embd = 4096; uint32_t n_mult = 256; uint32_t n_head = 32; uint32_t n_layer = 32; uint32_t n_rot = 64; enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16; }; size_t LLamaModel::requiredMem(const std::string &modelPath) { auto fin = std::ifstream(modelPath, std::ios::binary); fin.seekg(0, std::ios_base::end); size_t filesize = fin.tellg(); fin.seekg(0, std::ios_base::beg); uint32_t magic = 0; fin.read(reinterpret_cast(&magic), sizeof(magic)); if (magic != 0x67676a74) return 0; uint32_t version = 0; fin.read(reinterpret_cast(&version), sizeof(version)); llama_file_hparams hparams; fin.read(reinterpret_cast(&hparams.n_vocab), sizeof(hparams.n_vocab)); fin.read(reinterpret_cast(&hparams.n_embd), sizeof(hparams.n_embd)); fin.read(reinterpret_cast(&hparams.n_head), sizeof(hparams.n_head)); fin.read(reinterpret_cast(&hparams.n_layer), sizeof(hparams.n_layer)); fin.read(reinterpret_cast(&hparams.n_rot), sizeof(hparams.n_rot)); fin.read(reinterpret_cast(&hparams.ftype), sizeof(hparams.ftype)); const size_t n_ctx = 2048; const size_t kvcache_element_size = 2; // fp16 const size_t est_kvcache_size = hparams.n_embd * hparams.n_layer * 2u * n_ctx * kvcache_element_size; return filesize + est_kvcache_size; } bool LLamaModel::loadModel(const std::string &modelPath) { // load the model d_ptr->params = llama_context_default_params(); gpt_params params; d_ptr->params.n_ctx = 2048; d_ptr->params.seed = params.seed; d_ptr->params.f16_kv = params.memory_f16; d_ptr->params.use_mmap = params.use_mmap; #if defined (__APPLE__) d_ptr->params.use_mlock = true; #else d_ptr->params.use_mlock = params.use_mlock; #endif #ifdef GGML_USE_METAL if (llama_verbose()) { std::cerr << "llama.cpp: using Metal" << std::endl; } // metal always runs the whole model if n_gpu_layers is not 0, at least // currently d_ptr->params.n_gpu_layers = 1; #endif #ifdef GGML_USE_KOMPUTE if (ggml_vk_has_device()) { // vulkan always runs the whole model if n_gpu_layers is not 0, at least // currently d_ptr->params.n_gpu_layers = 1; } #endif d_ptr->ctx = llama_init_from_file(modelPath.c_str(), d_ptr->params); if (!d_ptr->ctx) { #ifdef GGML_USE_KOMPUTE // Explicitly free the device so next load it doesn't use it ggml_vk_free_device(); #endif std::cerr << "LLAMA ERROR: failed to load model from " << modelPath << std::endl; return false; } d_ptr->end_tokens = {llama_token_eos(d_ptr->ctx)}; #ifdef GGML_USE_KOMPUTE if (ggml_vk_has_device()) { std::cerr << "llama.cpp: using Vulkan on " << ggml_vk_current_device().name << std::endl; } #endif d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); d_ptr->modelLoaded = true; fflush(stderr); return true; } void LLamaModel::setThreadCount(int32_t n_threads) { d_ptr->n_threads = n_threads; } int32_t LLamaModel::threadCount() const { return d_ptr->n_threads; } LLamaModel::~LLamaModel() { if (d_ptr->ctx) { llama_free(d_ptr->ctx); } } bool LLamaModel::isModelLoaded() const { return d_ptr->modelLoaded; } size_t LLamaModel::stateSize() const { return llama_get_state_size(d_ptr->ctx); } size_t LLamaModel::saveState(uint8_t *dest) const { return llama_copy_state_data(d_ptr->ctx, dest); } size_t LLamaModel::restoreState(const uint8_t *src) { // const_cast is required, see: https://github.com/ggerganov/llama.cpp/pull/1540 return llama_set_state_data(d_ptr->ctx, const_cast(src)); } std::vector LLamaModel::tokenize(PromptContext &ctx, const std::string &str) const { const bool useBOS = ctx.n_past == 0 && (ctx.tokens.empty() || ctx.tokens.front() != llama_token_bos(d_ptr->ctx)); std::vector fres(str.size()+4); auto fres_len = llama_tokenize(d_ptr->ctx, str.c_str(), str.length(), fres.data(), fres.size(), useBOS); fres.resize(fres_len); return fres; } std::string LLamaModel::tokenToString(Token id) const { return llama_token_to_str(d_ptr->ctx, id); } LLModel::Token LLamaModel::sampleToken(PromptContext &promptCtx) const { const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size()); return llama_sample_top_p_top_k(d_ptr->ctx, promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks, n_prev_toks, promptCtx.top_k, promptCtx.top_p, promptCtx.temp, promptCtx.repeat_penalty); } bool LLamaModel::evalTokens(PromptContext &ctx, const std::vector &tokens) const { return llama_eval(d_ptr->ctx, tokens.data(), tokens.size(), ctx.n_past, d_ptr->n_threads) == 0; } int32_t LLamaModel::contextLength() const { return llama_n_ctx(d_ptr->ctx); } const std::vector &LLamaModel::endTokens() const { return d_ptr->end_tokens; } #if defined(GGML_USE_KOMPUTE) #include "ggml-vulkan.h" #endif std::vector LLamaModel::availableGPUDevices(size_t memoryRequired) { #if defined(GGML_USE_KOMPUTE) std::vector vkDevices = ggml_vk_available_devices(memoryRequired); std::vector devices; for(const auto& vkDevice : vkDevices) { LLModel::GPUDevice device; device.index = vkDevice.index; device.type = vkDevice.type; device.heapSize = vkDevice.heapSize; device.name = vkDevice.name; device.vendor = vkDevice.vendor; devices.push_back(device); } return devices; #else return std::vector(); #endif } bool LLamaModel::initializeGPUDevice(size_t memoryRequired, const std::string& device) { #if defined(GGML_USE_KOMPUTE) return ggml_vk_init_device(memoryRequired, device); #else return false; #endif } bool LLamaModel::initializeGPUDevice(const LLModel::GPUDevice &device, std::string *unavail_reason) { bool result = false; #if defined(GGML_USE_KOMPUTE) ggml_vk_device vkDevice; vkDevice.index = device.index; vkDevice.type = device.type; vkDevice.heapSize = device.heapSize; vkDevice.name = device.name; vkDevice.vendor = device.vendor; result = ggml_vk_init_device(vkDevice); if (!result && unavail_reason) { *unavail_reason = "failed to init GPU"; } #else if (unavail_reason) { *unavail_reason = "built without Kompute"; } #endif return result; } bool LLamaModel::initializeGPUDevice(int device) { #if defined(GGML_USE_KOMPUTE) return ggml_vk_init_device(device); #else return false; #endif } bool LLamaModel::hasGPUDevice() { #if defined(GGML_USE_KOMPUTE) return ggml_vk_has_device(); #else return false; #endif } bool LLamaModel::usingGPUDevice() { #if defined(GGML_USE_KOMPUTE) return ggml_vk_using_vulkan(); #elif defined(GGML_USE_METAL) return true; #endif return false; } std::string get_arch_name(gguf_context *ctx_gguf) { std::string arch_name; const int kid = gguf_find_key(ctx_gguf, "general.architecture"); enum gguf_type ktype = gguf_get_kv_type(ctx_gguf, kid); if (ktype != (GGUF_TYPE_STRING)) { throw std::runtime_error("ERROR: Can't get general architecture from gguf file."); } return gguf_get_val_str(ctx_gguf, kid); } #if defined(_WIN32) #define DLL_EXPORT __declspec(dllexport) #else #define DLL_EXPORT __attribute__ ((visibility ("default"))) #endif extern "C" { DLL_EXPORT bool is_g4a_backend_model_implementation() { return true; } DLL_EXPORT const char *get_model_type() { return modelType_; } DLL_EXPORT const char *get_build_variant() { return GGML_BUILD_VARIANT; } DLL_EXPORT bool magic_match(const char * fname) { struct ggml_context * ctx_meta = NULL; struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &ctx_meta, }; gguf_context *ctx_gguf = gguf_init_from_file(fname, params); if (!ctx_gguf) return false; bool isValid = gguf_get_version(ctx_gguf) <= 3; auto arch = get_arch_name(ctx_gguf); isValid = isValid && (arch == "llama" || arch == "starcoder" || arch == "falcon" || arch == "mpt"); gguf_free(ctx_gguf); return isValid; } DLL_EXPORT LLModel *construct() { llama_log_set(llama_log_callback, nullptr); return new LLamaModel; } }