#include "embllm.h" #include "modellist.h" #include "mysettings.h" #include "../gpt4all-backend/llmodel.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace Qt::Literals::StringLiterals; static const QString EMBEDDING_MODEL_NAME = u"nomic-embed-text-v1.5"_s; static const QString LOCAL_EMBEDDING_MODEL = u"nomic-embed-text-v1.5.f16.gguf"_s; EmbeddingLLMWorker::EmbeddingLLMWorker() : QObject(nullptr) , m_networkManager(new QNetworkAccessManager(this)) , m_stopGenerating(false) { moveToThread(&m_workerThread); connect(this, &EmbeddingLLMWorker::requestAtlasQueryEmbedding, this, &EmbeddingLLMWorker::atlasQueryEmbeddingRequested); connect(this, &EmbeddingLLMWorker::finished, &m_workerThread, &QThread::quit, Qt::DirectConnection); m_workerThread.setObjectName("embedding"); m_workerThread.start(); } EmbeddingLLMWorker::~EmbeddingLLMWorker() { m_stopGenerating = true; m_workerThread.quit(); m_workerThread.wait(); if (m_model) { delete m_model; m_model = nullptr; } } void EmbeddingLLMWorker::wait() { m_workerThread.wait(); } bool EmbeddingLLMWorker::loadModel() { m_nomicAPIKey.clear(); m_model = nullptr; if (MySettings::globalInstance()->localDocsUseRemoteEmbed()) { m_nomicAPIKey = MySettings::globalInstance()->localDocsNomicAPIKey(); return true; } #ifdef Q_OS_DARWIN static const QString embPathFmt = u"%1/../Resources/%2"_s; #else static const QString embPathFmt = u"%1/../resources/%2"_s; #endif QString filePath = embPathFmt.arg(QCoreApplication::applicationDirPath(), LOCAL_EMBEDDING_MODEL); if (!QFileInfo::exists(filePath)) { qWarning() << "WARNING: Local embedding model not found"; return false; } try { m_model = LLModel::Implementation::construct(filePath.toStdString()); } catch (const std::exception &e) { qWarning() << "WARNING: Could not load embedding model:" << e.what(); return false; } // NOTE: explicitly loads model on CPU to avoid GPU OOM // TODO(cebtenzzre): support GPU-accelerated embeddings bool success = m_model->loadModel(filePath.toStdString(), 2048, 0); if (!success) { qWarning() << "WARNING: Could not load embedding model"; delete m_model; m_model = nullptr; return false; } if (!m_model->supportsEmbedding()) { qWarning() << "WARNING: Model type does not support embeddings"; delete m_model; m_model = nullptr; return false; } // FIXME(jared): the user may want this to take effect without having to restart int n_threads = MySettings::globalInstance()->threadCount(); m_model->setThreadCount(n_threads); return true; } std::vector EmbeddingLLMWorker::generateQueryEmbedding(const QString &text) { { QMutexLocker locker(&m_mutex); if (!hasModel() && !loadModel()) { qWarning() << "WARNING: Could not load model for embeddings"; return {}; } if (!isNomic()) { std::vector embedding(m_model->embeddingSize()); try { m_model->embed({text.toStdString()}, embedding.data(), true); } catch (const std::exception &e) { qWarning() << "WARNING: LLModel::embed failed:" << e.what(); return {}; } return embedding; } } EmbeddingLLMWorker worker; emit worker.requestAtlasQueryEmbedding(text); worker.wait(); return worker.lastResponse(); } void EmbeddingLLMWorker::sendAtlasRequest(const QStringList &texts, const QString &taskType, const QVariant &userData) { QJsonObject root; root.insert("model", "nomic-embed-text-v1"); root.insert("texts", QJsonArray::fromStringList(texts)); root.insert("task_type", taskType); QJsonDocument doc(root); QUrl nomicUrl("https://api-atlas.nomic.ai/v1/embedding/text"); const QString authorization = u"Bearer %1"_s.arg(m_nomicAPIKey).trimmed(); QNetworkRequest request(nomicUrl); request.setHeader(QNetworkRequest::ContentTypeHeader, "application/json"); request.setRawHeader("Authorization", authorization.toUtf8()); request.setAttribute(QNetworkRequest::User, userData); QNetworkReply *reply = m_networkManager->post(request, doc.toJson(QJsonDocument::Compact)); connect(qGuiApp, &QCoreApplication::aboutToQuit, reply, &QNetworkReply::abort); connect(reply, &QNetworkReply::finished, this, &EmbeddingLLMWorker::handleFinished); } void EmbeddingLLMWorker::atlasQueryEmbeddingRequested(const QString &text) { { QMutexLocker locker(&m_mutex); if (!hasModel() && !loadModel()) { qWarning() << "WARNING: Could not load model for embeddings"; return; } if (!isNomic()) { qWarning() << "WARNING: Request to generate sync embeddings for local model invalid"; return; } Q_ASSERT(hasModel()); } sendAtlasRequest({text}, "search_query"); } void EmbeddingLLMWorker::docEmbeddingsRequested(const QVector &chunks) { if (m_stopGenerating) return; bool isNomic; { QMutexLocker locker(&m_mutex); if (!hasModel() && !loadModel()) { qWarning() << "WARNING: Could not load model for embeddings"; return; } isNomic = this->isNomic(); } if (!isNomic) { QVector results; results.reserve(chunks.size()); for (const auto &c: chunks) { EmbeddingResult result; result.model = c.model; result.folder_id = c.folder_id; result.chunk_id = c.chunk_id; // TODO(cebtenzzre): take advantage of batched embeddings result.embedding.resize(m_model->embeddingSize()); { QMutexLocker locker(&m_mutex); try { m_model->embed({c.chunk.toStdString()}, result.embedding.data(), false); } catch (const std::exception &e) { qWarning() << "WARNING: LLModel::embed failed:" << e.what(); return; } } results << result; } emit embeddingsGenerated(results); return; }; QStringList texts; for (auto &c: chunks) texts.append(c.chunk); sendAtlasRequest(texts, "search_document", QVariant::fromValue(chunks)); } std::vector jsonArrayToVector(const QJsonArray &jsonArray) { std::vector result; for (const auto &innerValue: jsonArray) { if (innerValue.isArray()) { QJsonArray innerArray = innerValue.toArray(); result.reserve(result.size() + innerArray.size()); for (const auto &value: innerArray) { result.push_back(static_cast(value.toDouble())); } } } return result; } QVector jsonArrayToEmbeddingResults(const QVector& chunks, const QJsonArray& embeddings) { QVector results; if (chunks.size() != embeddings.size()) { qWarning() << "WARNING: Size of json array result does not match input!"; return results; } for (int i = 0; i < chunks.size(); ++i) { const EmbeddingChunk& chunk = chunks.at(i); const QJsonArray embeddingArray = embeddings.at(i).toArray(); std::vector embeddingVector; for (const auto &value: embeddingArray) embeddingVector.push_back(static_cast(value.toDouble())); EmbeddingResult result; result.model = chunk.model; result.folder_id = chunk.folder_id; result.chunk_id = chunk.chunk_id; result.embedding = std::move(embeddingVector); results.push_back(std::move(result)); } return results; } void EmbeddingLLMWorker::handleFinished() { QNetworkReply *reply = qobject_cast(sender()); if (!reply) return; QVariant retrievedData = reply->request().attribute(QNetworkRequest::User); QVector chunks; if (retrievedData.isValid() && retrievedData.canConvert>()) chunks = retrievedData.value>(); QVariant response = reply->attribute(QNetworkRequest::HttpStatusCodeAttribute); Q_ASSERT(response.isValid()); bool ok; int code = response.toInt(&ok); if (!ok || code != 200) { QString errorDetails; QString replyErrorString = reply->errorString().trimmed(); QByteArray replyContent = reply->readAll().trimmed(); errorDetails = u"ERROR: Nomic Atlas responded with error code \"%1\""_s.arg(code); if (!replyErrorString.isEmpty()) errorDetails += u". Error Details: \"%1\""_s.arg(replyErrorString); if (!replyContent.isEmpty()) errorDetails += u". Response Content: \"%1\""_s.arg(QString::fromUtf8(replyContent)); qWarning() << errorDetails; emit errorGenerated(chunks, errorDetails); return; } QByteArray jsonData = reply->readAll(); QJsonParseError err; QJsonDocument document = QJsonDocument::fromJson(jsonData, &err); if (err.error != QJsonParseError::NoError) { qWarning() << "ERROR: Couldn't parse Nomic Atlas response:" << jsonData << err.errorString(); return; } const QJsonObject root = document.object(); const QJsonArray embeddings = root.value("embeddings").toArray(); if (!chunks.isEmpty()) { emit embeddingsGenerated(jsonArrayToEmbeddingResults(chunks, embeddings)); } else { m_lastResponse = jsonArrayToVector(embeddings); emit finished(); } reply->deleteLater(); } EmbeddingLLM::EmbeddingLLM() : QObject(nullptr) , m_embeddingWorker(new EmbeddingLLMWorker) { connect(this, &EmbeddingLLM::requestDocEmbeddings, m_embeddingWorker, &EmbeddingLLMWorker::docEmbeddingsRequested, Qt::QueuedConnection); connect(m_embeddingWorker, &EmbeddingLLMWorker::embeddingsGenerated, this, &EmbeddingLLM::embeddingsGenerated, Qt::QueuedConnection); connect(m_embeddingWorker, &EmbeddingLLMWorker::errorGenerated, this, &EmbeddingLLM::errorGenerated, Qt::QueuedConnection); } EmbeddingLLM::~EmbeddingLLM() { delete m_embeddingWorker; m_embeddingWorker = nullptr; } QString EmbeddingLLM::model() { return EMBEDDING_MODEL_NAME; } // TODO(jared): embed using all necessary embedding models given collection std::vector EmbeddingLLM::generateQueryEmbedding(const QString &text) { return m_embeddingWorker->generateQueryEmbedding(text); } void EmbeddingLLM::generateDocEmbeddingsAsync(const QVector &chunks) { emit requestDocEmbeddings(chunks); }