mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2024-10-01 01:06:10 -04:00
New tokenizer implementation for MPT and GPT-J
Improves output quality by making these tokenizers more closely match the behavior of the huggingface `tokenizers` based BPE tokenizers these models were trained with. Featuring: * Fixed unicode handling (via ICU) * Fixed BPE token merge handling * Complete added vocabulary handling
This commit is contained in:
parent
7e18f179e9
commit
ee3469ba6c
@ -1,4 +1,4 @@
|
||||
[codespell]
|
||||
skip = .git,*.pdf,*.svg
|
||||
skip = .git,*.pdf,*.svg,*_tokenizer_config.h
|
||||
#
|
||||
# ignore-words-list =
|
||||
|
@ -23,6 +23,7 @@ set(LLMODEL_VERSION "${LLMODEL_VERSION_MAJOR}.${LLMODEL_VERSION_MINOR}.${LLMODEL
|
||||
project(llmodel VERSION ${LLMODEL_VERSION} LANGUAGES CXX C)
|
||||
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
|
||||
set(LLAMA_BUILD_EXAMPLES ON CACHE BOOL "llama: build examples" FORCE)
|
||||
set(BUILD_SHARED_LIBS ON FORCE)
|
||||
@ -34,6 +35,7 @@ if (GPT4ALL_AVX_ONLY)
|
||||
set(LLAMA_FMA OFF CACHE BOOL "llama: enable FMA" FORCE)
|
||||
endif()
|
||||
|
||||
find_package(ICU REQUIRED COMPONENTS uc i18n)
|
||||
add_subdirectory(llama.cpp)
|
||||
|
||||
add_library(llmodel
|
||||
@ -41,12 +43,14 @@ add_library(llmodel
|
||||
llamamodel.h llamamodel.cpp
|
||||
llama.cpp/examples/common.cpp
|
||||
llmodel.h llmodel_c.h llmodel_c.cpp
|
||||
mpt.h mpt.cpp
|
||||
mpt.h mpt.cpp tokenizer/bpe.cpp tokenizer/bpe.h
|
||||
tokenizer/mpt_tokenizer_config.h tokenizer/gptj_tokenizer_config.h
|
||||
utils.h utils.cpp
|
||||
)
|
||||
|
||||
target_link_libraries(llmodel
|
||||
PRIVATE llama)
|
||||
PRIVATE llama
|
||||
PUBLIC ICU::uc ICU::i18n)
|
||||
|
||||
set_target_properties(llmodel PROPERTIES
|
||||
VERSION ${PROJECT_VERSION}
|
||||
|
@ -7,6 +7,7 @@
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <string>
|
||||
@ -860,6 +861,8 @@ bool GPTJ::loadModel(const std::string &modelPath) {
|
||||
d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
||||
d_ptr->modelLoaded = true;
|
||||
fflush(stdout);
|
||||
|
||||
get_bpecpp_tokenizer(TokenizerType::GPTJ, m_bpe, m_tokav);
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -915,7 +918,7 @@ void GPTJ::prompt(const std::string &prompt,
|
||||
int64_t t_prompt_us = 0;
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(d_ptr->vocab, prompt);
|
||||
std::vector<uint32_t> embd_inp = m_tokav->encode(prompt, *m_bpe);
|
||||
|
||||
// save the context size
|
||||
promptCtx.n_ctx = d_ptr->model->hparams.n_ctx;
|
||||
@ -1032,7 +1035,7 @@ void GPTJ::prompt(const std::string &prompt,
|
||||
if (id == 50256 /*end of text*/)
|
||||
goto stop_generating;
|
||||
|
||||
const std::string str = d_ptr->vocab.id_to_token[id];
|
||||
const std::string str = m_tokav->decode({(uint32_t) id}, *m_bpe, true, false);
|
||||
|
||||
// Check if the provided str is part of our reverse prompts
|
||||
bool foundPartialReversePrompt = false;
|
||||
@ -1062,7 +1065,8 @@ void GPTJ::prompt(const std::string &prompt,
|
||||
if (promptCtx.tokens.size() == promptCtx.n_ctx)
|
||||
promptCtx.tokens.erase(promptCtx.tokens.begin());
|
||||
promptCtx.tokens.push_back(t);
|
||||
if (!responseCallback(t, d_ptr->vocab.id_to_token[t]))
|
||||
const std::string decoded = m_tokav->decode({(uint32_t) t}, *m_bpe, true, false);
|
||||
if (!responseCallback(t, decoded))
|
||||
goto stop_generating;
|
||||
}
|
||||
cachedTokens.clear();
|
||||
|
@ -5,6 +5,7 @@
|
||||
#include <functional>
|
||||
#include <vector>
|
||||
#include "llmodel.h"
|
||||
#include "tokenizer/bpe.h"
|
||||
|
||||
class GPTJPrivate;
|
||||
class GPTJ : public LLModel {
|
||||
@ -31,6 +32,8 @@ protected:
|
||||
|
||||
private:
|
||||
GPTJPrivate *d_ptr;
|
||||
std::unique_ptr<bpecpp::AdditionalVocabAdapter> m_tokav;
|
||||
std::unique_ptr<bpecpp::BPE> m_bpe;
|
||||
};
|
||||
|
||||
#endif // GPTJ_H
|
||||
|
@ -7,6 +7,7 @@
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <random>
|
||||
@ -785,6 +786,12 @@ bool MPT::loadModel(const std::string &modelPath) {
|
||||
d_ptr->modelLoaded = true;
|
||||
d_ptr->has_im_end = d_ptr->vocab.token_to_id.find("<|im_end|>") != d_ptr->vocab.token_to_id.end();
|
||||
fflush(stdout);
|
||||
|
||||
if (modelPath.find("-chat") != std::string::npos) {
|
||||
get_bpecpp_tokenizer(TokenizerType::MPT_CHAT, m_bpe, m_tokav);
|
||||
} else {
|
||||
get_bpecpp_tokenizer(TokenizerType::MPT, m_bpe, m_tokav);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -840,7 +847,7 @@ void MPT::prompt(const std::string &prompt,
|
||||
int64_t t_prompt_us = 0;
|
||||
|
||||
// tokenize the prompt
|
||||
std::vector<int> embd_inp = gpt_tokenize(d_ptr->vocab, prompt);
|
||||
std::vector<uint32_t> embd_inp = m_tokav->encode(prompt, *m_bpe);
|
||||
|
||||
// save the context size
|
||||
promptCtx.n_ctx = d_ptr->model->hparams.n_ctx;
|
||||
@ -906,6 +913,7 @@ void MPT::prompt(const std::string &prompt,
|
||||
int r_instructFound = 0;
|
||||
|
||||
std::string cachedResponse;
|
||||
std::string decodeBuffer;
|
||||
std::vector<int> cachedTokens;
|
||||
std::unordered_set<std::string> reversePrompts
|
||||
= { "### Instruction", "### Prompt", "### Response", "### Human", "### Assistant", "### Context" };
|
||||
@ -961,7 +969,7 @@ void MPT::prompt(const std::string &prompt,
|
||||
if (id == 0 /*end of text*/)
|
||||
goto stop_generating;
|
||||
|
||||
const std::string str = d_ptr->vocab.id_to_token[id];
|
||||
const std::string str = m_tokav->decode({(uint32_t) id}, *m_bpe, true, false);
|
||||
|
||||
// Check if the provided str is part of our reverse prompts
|
||||
bool foundPartialReversePrompt = false;
|
||||
@ -991,7 +999,8 @@ void MPT::prompt(const std::string &prompt,
|
||||
if (promptCtx.tokens.size() == promptCtx.n_ctx)
|
||||
promptCtx.tokens.erase(promptCtx.tokens.begin());
|
||||
promptCtx.tokens.push_back(t);
|
||||
if (!responseCallback(t, d_ptr->vocab.id_to_token[t]))
|
||||
const std::string decoded = m_tokav->decode({(uint32_t) t}, *m_bpe, true, false);
|
||||
if (!responseCallback(t, decoded))
|
||||
goto stop_generating;
|
||||
}
|
||||
cachedTokens.clear();
|
||||
|
@ -5,6 +5,7 @@
|
||||
#include <functional>
|
||||
#include <vector>
|
||||
#include "llmodel.h"
|
||||
#include "tokenizer/bpe.h"
|
||||
|
||||
class MPTPrivate;
|
||||
class MPT : public LLModel {
|
||||
@ -31,6 +32,8 @@ protected:
|
||||
|
||||
private:
|
||||
MPTPrivate *d_ptr;
|
||||
std::unique_ptr<bpecpp::AdditionalVocabAdapter> m_tokav;
|
||||
std::unique_ptr<bpecpp::BPE> m_bpe;
|
||||
};
|
||||
|
||||
#endif // MPT_H
|
||||
|
136
gpt4all-backend/scripts/gen_tokenizer_include.py
Normal file
136
gpt4all-backend/scripts/gen_tokenizer_include.py
Normal file
@ -0,0 +1,136 @@
|
||||
import sys
|
||||
import json
|
||||
from dataclasses import dataclass
|
||||
|
||||
def iter_with_last(lst):
|
||||
llen = len(lst)
|
||||
for i, entry in enumerate(lst):
|
||||
last = i == (llen - 1)
|
||||
yield last, entry
|
||||
|
||||
@dataclass
|
||||
class BufSlice:
|
||||
offset: int
|
||||
length: int
|
||||
def __repr__(self):
|
||||
return '{'f'0x{self.offset:x},{self.length}''}'
|
||||
|
||||
def c_str_dump(bs):
|
||||
s = bytearray()
|
||||
s += b'"'
|
||||
llen = 0
|
||||
lasthex = False
|
||||
for byte in bs:
|
||||
if byte in (b' 01234567890abcdefghijklmnopqrstuvwxyz_-=/;:<>'
|
||||
b'ABCDEFGHIJKLMNOPQRSTUVWXYZ!@#$%^&*(),.[]{}`~|'):
|
||||
# need to avoid hex characters not part of a hex escape
|
||||
# appearing directly after a hex scape
|
||||
if lasthex and byte in b'0123456789abcdefABCDEF':
|
||||
s += b'""'
|
||||
llen += 2
|
||||
s += bytes([byte])
|
||||
llen += 1
|
||||
lasthex = False
|
||||
else:
|
||||
s += f'\\x{byte:02x}'.encode('utf8')
|
||||
llen += 4
|
||||
lasthex = True
|
||||
if llen >= 80:
|
||||
llen = 0
|
||||
s += b"\"\n\""
|
||||
s += b'"'
|
||||
return s.decode('utf8')
|
||||
|
||||
class Buf:
|
||||
def __init__(self):
|
||||
self.buf = b''
|
||||
self.cache = {}
|
||||
|
||||
def get(self, s):
|
||||
if s in self.cache:
|
||||
return self.cache[s]
|
||||
offset = len(self.buf)
|
||||
bs = s.encode('utf8')
|
||||
exoffs = self.buf.find(bs)
|
||||
if exoffs != -1:
|
||||
slc = BufSlice(offset=exoffs, length=len(bs))
|
||||
self.cache[s] = slc
|
||||
return slc
|
||||
return None
|
||||
|
||||
def insert(self, s):
|
||||
slc = self.get(s)
|
||||
if slc is None:
|
||||
bs = s.encode('utf8')
|
||||
offset = len(self.buf)
|
||||
self.buf += bs
|
||||
slc = BufSlice(offset=offset, length=len(bs))
|
||||
return slc
|
||||
|
||||
class BreakEvery:
|
||||
def __init__(self, n):
|
||||
self.counter = 0
|
||||
self.n = n
|
||||
|
||||
def __repr__(self):
|
||||
self.counter += 1
|
||||
self.counter %= self.n
|
||||
if self.counter == 0:
|
||||
return '\n'
|
||||
return ''
|
||||
|
||||
def do_convert(tkfilename, prefix):
|
||||
with open(tkfilename, 'rb') as tkf:
|
||||
tokconfig = json.load(tkf)
|
||||
|
||||
# every string in the vocab also appears in the merges list so we can store
|
||||
# much less data in the binary by deduplicating these references, sorting by
|
||||
# length descending makes it more likely prefixes of longer strings get
|
||||
# deduped, and secondarily sorting lexicographically them makes the buffer
|
||||
# data more compressible (they are not compressed in the binary itself, but
|
||||
# the binary will be more compressible)
|
||||
split_merges = [s.split(' ') for s in tokconfig['model']['merges']]
|
||||
len_then = lambda m: (len(m),m)
|
||||
avwords = sorted((av['content'] for av in tokconfig['added_tokens']), key=len_then, reverse=True)
|
||||
all_strs = avwords + sorted(list(tokconfig['model']['vocab'].keys()), key=len_then, reverse=True)
|
||||
buf = Buf()
|
||||
for s in all_strs:
|
||||
buf.insert(s)
|
||||
|
||||
print('// @generated GENERATED BY scripts/gen_tokenizer_include.py DO NOT MODIFY')
|
||||
print(f'#ifndef {prefix.upper()}_TOKENIZER_CONFIG_H_')
|
||||
print(f'#define {prefix.upper()}_TOKENIZER_CONFIG_H_')
|
||||
print('#include "bpe.h"')
|
||||
print(f"// buflen {len(buf.buf)}")
|
||||
print(f"constexpr const char {prefix}_buffer[] =\n{c_str_dump(buf.buf)};")
|
||||
avilen = len(tokconfig['added_tokens'])
|
||||
print(f'constexpr std::array<bpecpp::additional_vocab_item_embedded, {avilen}> {prefix}_additional_vocab = ''{{')
|
||||
for last, avi in iter_with_last(tokconfig['added_tokens']):
|
||||
comma = ',' if not last else ''
|
||||
print(' {'f'.id = {avi["id"]}, .content={buf.get(avi["content"])}, .special={json.dumps(avi["special"])}''}' + comma)
|
||||
print('}};')
|
||||
print()
|
||||
mergeslen = len(tokconfig['model']['merges'])
|
||||
print(f'constexpr std::array<std::pair<bpecpp::buf_ref, bpecpp::buf_ref>, {mergeslen}> {prefix}_merges = ''{{')
|
||||
breaker = BreakEvery(4)
|
||||
for last, (ma, mb) in iter_with_last(split_merges):
|
||||
comma = ',' if not last else ''
|
||||
print(' {'f'{buf.get(ma)},{buf.get(mb)}''}' + comma + repr(breaker), end='')
|
||||
print('\n}};')
|
||||
vocablen = len(tokconfig['model']['vocab'])
|
||||
print(f'constexpr std::array<bpecpp::buf_ref, {vocablen}> {prefix}_vocab = ''{{')
|
||||
breaker = BreakEvery(8)
|
||||
for last, vi in iter_with_last(tokconfig['model']['vocab']):
|
||||
comma = ',' if not last else ''
|
||||
print(f' {buf.get(vi)}' + comma + repr(breaker), end='')
|
||||
print('\n}};')
|
||||
print(f'#endif // {prefix.upper()}_TOKENIZER_CONFIG_H_')
|
||||
|
||||
def main():
|
||||
if len(sys.argv) < 3:
|
||||
print(f'Usage: {sys.argv[0]} <hf tokenizer json> <symbol prefix>')
|
||||
sys.exit(1)
|
||||
do_convert(sys.argv[1], sys.argv[2])
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
257
gpt4all-backend/tokenizer/bpe.cpp
Normal file
257
gpt4all-backend/tokenizer/bpe.cpp
Normal file
@ -0,0 +1,257 @@
|
||||
#include "bpe.h"
|
||||
#include <unicode/normalizer2.h>
|
||||
#include <unicode/regex.h>
|
||||
#include <unicode/schriter.h>
|
||||
#include <unicode/unistr.h>
|
||||
|
||||
#include <regex>
|
||||
#include <stdexcept>
|
||||
#include <iostream>
|
||||
|
||||
namespace bpecpp {
|
||||
const std::string_view BPE_PRETOK_REGEX =
|
||||
R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
||||
|
||||
static void get_bigrams(const std::vector<icu::UnicodeString>& input,
|
||||
std::unordered_set<UnicodeBigram, bigram_hash>& pairs) {
|
||||
pairs.clear();
|
||||
auto i = input.begin();
|
||||
auto prev = *i++;
|
||||
for (; i != input.end(); ++i) {
|
||||
pairs.insert({prev, *i});
|
||||
prev = *i;
|
||||
}
|
||||
}
|
||||
|
||||
BPE::BPE(const std::unordered_map<std::string_view, uint32_t>& vocab,
|
||||
const std::vector<std::pair<std::string_view, std::string_view>>& merges) {
|
||||
for (auto pair : vocab) {
|
||||
icu::UnicodeString encd = icu::UnicodeString::fromUTF8(pair.first);
|
||||
m_vocab[encd] = pair.second;
|
||||
m_reverse_vocab[pair.second] = encd;
|
||||
}
|
||||
size_t n = 0;
|
||||
for (auto merge : merges) {
|
||||
auto left = icu::UnicodeString::fromUTF8(merge.first);
|
||||
auto right = icu::UnicodeString::fromUTF8(merge.second);
|
||||
m_merges[{left, right}] = n++;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<uint32_t> BPE::encode(const std::string& input) {
|
||||
auto normalized = normalize_nfc(input);
|
||||
auto pretokenized = pretokenize(normalized);
|
||||
std::vector<icu::UnicodeString> tokens_merged;
|
||||
for (auto &ptok : pretokenized) {
|
||||
bpe(ptok, tokens_merged);
|
||||
}
|
||||
std::vector<uint32_t> final_tokens;
|
||||
for (auto &mtok : tokens_merged) {
|
||||
final_tokens.push_back(m_vocab[mtok]);
|
||||
}
|
||||
return final_tokens;
|
||||
}
|
||||
|
||||
std::string BPE::decode(const std::vector<uint32_t>& tokens, bool valid_utf8) {
|
||||
std::string out;
|
||||
for (uint32_t t : tokens) {
|
||||
icu::UnicodeString benc = m_reverse_vocab[t];
|
||||
icu::StringCharacterIterator schriter(benc);
|
||||
for (UChar32 c = schriter.first32(); schriter.hasNext();
|
||||
c = schriter.next32()) {
|
||||
out.push_back(m_bs_table.codepoint_to_byte((uint32_t)c));
|
||||
}
|
||||
}
|
||||
// roundtrip through ICU to replace invalid utf8 with U+FFFD
|
||||
if (valid_utf8) {
|
||||
auto tmp = icu::UnicodeString::fromUTF8(out);
|
||||
out.clear();
|
||||
tmp.toUTF8String(out);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
// https://github.com/karpathy/minGPT/blob/37baab71b9abea1b76ab957409a1cc2fbfba8a26/mingpt/bpe.py#L95
|
||||
void BPE::bpe(icu::UnicodeString token_pretoked,
|
||||
std::vector<icu::UnicodeString>& output) {
|
||||
if (token_pretoked.length() < 2) {
|
||||
output.push_back(token_pretoked);
|
||||
return;
|
||||
}
|
||||
std::vector<icu::UnicodeString> words;
|
||||
std::vector<icu::UnicodeString> words_update;
|
||||
icu::StringCharacterIterator schriter(token_pretoked);
|
||||
UChar32 c;
|
||||
for (schriter.setToStart(); schriter.hasNext();) {
|
||||
c = schriter.next32PostInc();
|
||||
icu::UnicodeString w;
|
||||
w.append(c);
|
||||
words.push_back(w);
|
||||
}
|
||||
std::unordered_set<UnicodeBigram, bigram_hash> pairs;
|
||||
get_bigrams(words, pairs);
|
||||
while (true) {
|
||||
size_t min_rank = SIZE_MAX;
|
||||
UnicodeBigram to_merge;
|
||||
for (auto &bigram : pairs) {
|
||||
auto loc = m_merges.find(bigram);
|
||||
if (loc != m_merges.end() && loc->second < min_rank) {
|
||||
min_rank = loc->second;
|
||||
to_merge = loc->first;
|
||||
}
|
||||
}
|
||||
if (min_rank == SIZE_MAX) {
|
||||
break;
|
||||
} else {
|
||||
auto i = words.begin();
|
||||
while (i < words.end()) {
|
||||
if (*i == to_merge.first) {
|
||||
auto inext = i;
|
||||
inext++;
|
||||
if (inext != words.end() && *inext == to_merge.second) {
|
||||
words_update.push_back(*i + *inext);
|
||||
i = inext;
|
||||
} else {
|
||||
words_update.push_back(*i);
|
||||
}
|
||||
} else {
|
||||
words_update.push_back(*i);
|
||||
}
|
||||
++i;
|
||||
}
|
||||
words.swap(words_update);
|
||||
words_update.clear();
|
||||
get_bigrams(words, pairs);
|
||||
}
|
||||
}
|
||||
output.insert(output.end(), words.begin(), words.end());
|
||||
}
|
||||
|
||||
std::string BPE::normalize_nfc(const std::string& input) {
|
||||
UErrorCode uerror = U_ZERO_ERROR;
|
||||
auto nfcnorm = icu::Normalizer2::getNFCInstance(uerror);
|
||||
if (!U_SUCCESS(uerror))
|
||||
throw std::runtime_error("could not get ICU NFC normalizer");
|
||||
auto icu_ti = icu::UnicodeString::fromUTF8(input);
|
||||
std::string out;
|
||||
nfcnorm->normalize(icu_ti, uerror).toUTF8String(out);
|
||||
if (!U_SUCCESS(uerror))
|
||||
throw std::runtime_error("ICU string normalization failed");
|
||||
return out;
|
||||
}
|
||||
|
||||
std::vector<icu::UnicodeString> BPE::pretokenize(const std::string& input) {
|
||||
UParseError pe;
|
||||
UErrorCode uerror = U_ZERO_ERROR;
|
||||
auto bpe_re_icustr = icu::UnicodeString::fromUTF8(BPE_PRETOK_REGEX);
|
||||
if (m_pretok_re == nullptr) {
|
||||
m_pretok_re = std::unique_ptr<icu::RegexPattern>(
|
||||
icu::RegexPattern::compile(bpe_re_icustr, pe, uerror));
|
||||
if (!U_SUCCESS(uerror))
|
||||
throw std::runtime_error("Compiling BPE pretokenizer regex failed");
|
||||
}
|
||||
auto uinput = icu::UnicodeString::fromUTF8(input);
|
||||
std::unique_ptr<icu::RegexMatcher> pretok_matcher(
|
||||
m_pretok_re->matcher(uinput, uerror));
|
||||
std::vector<icu::UnicodeString> pretoks;
|
||||
if (!U_SUCCESS(uerror))
|
||||
throw std::runtime_error("Creating BPE pretokenizer matcher failed");
|
||||
while (pretok_matcher->find()) {
|
||||
auto match = pretok_matcher->group(uerror);
|
||||
if (!U_SUCCESS(uerror))
|
||||
throw std::runtime_error(
|
||||
"Getting BPE pretokenizer regex match failed");
|
||||
std::string s;
|
||||
icu::UnicodeString out;
|
||||
match.toUTF8String(s);
|
||||
for (char c : s) {
|
||||
uint32_t codepoint = m_bs_table.byte_to_codepoint((uint8_t)c);
|
||||
out.append((UChar32)codepoint);
|
||||
}
|
||||
pretoks.push_back(out);
|
||||
}
|
||||
return pretoks;
|
||||
}
|
||||
|
||||
static std::string regex_escape(const std::string_view inp) {
|
||||
std::string s(inp);
|
||||
static const std::regex metacharacters(R"([\.\^\$\-\+\(\)\[\]\{\}\|\?\*])");
|
||||
return std::regex_replace(s, metacharacters, "\\$&");
|
||||
}
|
||||
|
||||
AdditionalVocabAdapter::AdditionalVocabAdapter(
|
||||
const std::vector<additional_vocab_item>& vocab) {
|
||||
std::string addedtoken_regex;
|
||||
for (const additional_vocab_item& item : vocab) {
|
||||
if (!addedtoken_regex.empty()) {
|
||||
addedtoken_regex += "|";
|
||||
}
|
||||
addedtoken_regex += regex_escape(item.content);
|
||||
m_token_to_id[item.content] = item.id;
|
||||
m_id_to_token[item.id] = item.content;
|
||||
if (item.special) {
|
||||
m_special_ids.insert(item.id);
|
||||
}
|
||||
}
|
||||
m_addedtoken_re = std::regex(addedtoken_regex);
|
||||
}
|
||||
|
||||
std::vector<uint32_t> AdditionalVocabAdapter::encode(
|
||||
const std::string& input,
|
||||
BPE& bpemodel,
|
||||
bool encode_special_tokens) {
|
||||
if (m_token_to_id.empty()) {
|
||||
return bpemodel.encode(input);
|
||||
}
|
||||
std::vector<uint32_t> out;
|
||||
std::string work = input;
|
||||
std::smatch m;
|
||||
while (std::regex_search(work, m, m_addedtoken_re)) {
|
||||
auto tokloc = m_token_to_id.find(m.str());
|
||||
if (tokloc != m_token_to_id.end()) {
|
||||
auto tokid = tokloc->second;
|
||||
auto prefix_decoded = bpemodel.encode(m.prefix());
|
||||
out.insert(out.end(), prefix_decoded.begin(), prefix_decoded.end());
|
||||
bool special = m_special_ids.find(tokid) != m_special_ids.end();
|
||||
if (!special || encode_special_tokens) {
|
||||
out.push_back(tokid);
|
||||
}
|
||||
work = m.suffix();
|
||||
}
|
||||
}
|
||||
if (!work.empty()) {
|
||||
auto rest_decoded = bpemodel.encode(work);
|
||||
out.insert(out.end(), rest_decoded.begin(), rest_decoded.end());
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
std::string AdditionalVocabAdapter::decode(const std::vector<uint32_t>& tokens,
|
||||
BPE& bpemodel,
|
||||
bool decode_special_tokens,
|
||||
bool valid_utf8) {
|
||||
std::string out;
|
||||
std::vector<uint32_t> to_decode;
|
||||
for (auto tokid : tokens) {
|
||||
auto tokloc = m_id_to_token.find(tokid);
|
||||
if (tokloc != m_id_to_token.end()) { // is an added token
|
||||
if (!to_decode.empty()) {
|
||||
out += bpemodel.decode(to_decode, valid_utf8);
|
||||
to_decode.clear();
|
||||
}
|
||||
bool special = m_special_ids.find(tokid) != m_special_ids.end();
|
||||
// only include non-special tokens unless decode_special_tokens
|
||||
if (!special || decode_special_tokens) {
|
||||
out += tokloc->second;
|
||||
}
|
||||
} else {
|
||||
// non-added, regular token.
|
||||
to_decode.push_back(tokid);
|
||||
}
|
||||
}
|
||||
if (!to_decode.empty()) {
|
||||
out += bpemodel.decode(to_decode, valid_utf8);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
} // namespace bpecpp
|
123
gpt4all-backend/tokenizer/bpe.h
Normal file
123
gpt4all-backend/tokenizer/bpe.h
Normal file
@ -0,0 +1,123 @@
|
||||
#pragma once
|
||||
#include <unicode/regex.h>
|
||||
#include <unicode/unistr.h>
|
||||
|
||||
#include <cstdint>
|
||||
#include <regex>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
#include <string_view>
|
||||
|
||||
namespace bpecpp {
|
||||
typedef std::pair<icu::UnicodeString, icu::UnicodeString> UnicodeBigram;
|
||||
|
||||
class bpe_char_byte_table {
|
||||
public:
|
||||
bpe_char_byte_table() {
|
||||
int n = 0;
|
||||
for (uint8_t byte = 0; m_codepoint_to_byte.size() < 256; byte++) {
|
||||
bool keep = (byte >= '!' && byte <= '~') ||
|
||||
(byte >= 0xa1 && byte <= 0xac) ||
|
||||
(byte >= 0xae && byte <= 0xff);
|
||||
uint32_t codepoint = byte;
|
||||
if (!keep) {
|
||||
codepoint = 256 + n;
|
||||
n++;
|
||||
}
|
||||
m_byte_to_codepoint[byte] = codepoint;
|
||||
m_codepoint_to_byte[codepoint] = byte;
|
||||
};
|
||||
}
|
||||
uint32_t byte_to_codepoint(uint8_t byte) {
|
||||
return m_byte_to_codepoint[byte];
|
||||
}
|
||||
|
||||
uint8_t codepoint_to_byte(uint32_t codepoint) {
|
||||
return m_codepoint_to_byte.at(codepoint);
|
||||
}
|
||||
|
||||
private:
|
||||
std::array<uint32_t, 256> m_byte_to_codepoint;
|
||||
std::unordered_map<uint32_t, uint8_t> m_codepoint_to_byte;
|
||||
};
|
||||
|
||||
struct bigram_hash {
|
||||
std::size_t operator()(const UnicodeBigram& pair) const {
|
||||
return pair.first.hashCode() + pair.second.hashCode();
|
||||
}
|
||||
};
|
||||
|
||||
struct icu_hash {
|
||||
std::size_t operator()(const icu::UnicodeString& us) const {
|
||||
return us.hashCode();
|
||||
}
|
||||
};
|
||||
|
||||
class BPE {
|
||||
public:
|
||||
BPE(const std::unordered_map<std::string_view, uint32_t> &vocab,
|
||||
const std::vector<std::pair<std::string_view, std::string_view>> &merges);
|
||||
|
||||
std::vector<uint32_t> encode(const std::string& input);
|
||||
|
||||
std::string decode(const std::vector<uint32_t>& tokens,
|
||||
bool valid_utf8 = true);
|
||||
|
||||
private:
|
||||
std::unordered_map<icu::UnicodeString, uint32_t, icu_hash> m_vocab;
|
||||
std::unordered_map<uint32_t, icu::UnicodeString> m_reverse_vocab;
|
||||
std::unordered_map<UnicodeBigram, size_t, bigram_hash> m_merges;
|
||||
bpe_char_byte_table m_bs_table;
|
||||
|
||||
void bpe(icu::UnicodeString token_pretoked,
|
||||
std::vector<icu::UnicodeString>& output);
|
||||
std::unique_ptr<icu::RegexPattern> m_pretok_re;
|
||||
std::string normalize_nfc(const std::string& input);
|
||||
std::vector<icu::UnicodeString> pretokenize(const std::string& input);
|
||||
};
|
||||
|
||||
// for embedding tokenizer configs in the library - had initially constructed
|
||||
// `string_view`s in the generated headers, *but* generating thousands actual
|
||||
// references into the buffer generates thousands of *relocations* and makes
|
||||
// compilation rather slow, delaying resolving the real address into a
|
||||
// string_view until runtime fixes that
|
||||
struct buf_ref {
|
||||
// packing these into a single u32 reduces the size of the embedded
|
||||
// configs significantly (5.0MB->1.6MB)
|
||||
uint32_t offset : 20;
|
||||
uint32_t length : 12;
|
||||
|
||||
std::string_view into(const char* buf) {
|
||||
return std::string_view(&buf[offset], length);
|
||||
}
|
||||
};
|
||||
struct additional_vocab_item_embedded {
|
||||
uint32_t id;
|
||||
buf_ref content;
|
||||
bool special;
|
||||
};
|
||||
struct additional_vocab_item {
|
||||
uint32_t id;
|
||||
std::string_view content;
|
||||
bool special = false;
|
||||
};
|
||||
class AdditionalVocabAdapter {
|
||||
public:
|
||||
AdditionalVocabAdapter(const std::vector<additional_vocab_item> &vocab);
|
||||
std::vector<uint32_t> encode(const std::string& input,
|
||||
BPE& bpemodel,
|
||||
bool encode_special_tokens = true);
|
||||
std::string decode(const std::vector<uint32_t>& tokens,
|
||||
BPE& bpemodel,
|
||||
bool decode_special_tokens = true,
|
||||
bool valid_utf8 = true);
|
||||
|
||||
private:
|
||||
std::unordered_map<std::string_view, uint32_t> m_token_to_id;
|
||||
std::unordered_map<uint32_t, std::string_view> m_id_to_token;
|
||||
std::unordered_set<uint32_t> m_special_ids;
|
||||
std::regex m_addedtoken_re;
|
||||
};
|
||||
|
||||
} // namespace bpecpp
|
23393
gpt4all-backend/tokenizer/gptj_tokenizer_config.h
Normal file
23393
gpt4all-backend/tokenizer/gptj_tokenizer_config.h
Normal file
File diff suppressed because it is too large
Load Diff
23175
gpt4all-backend/tokenizer/mpt_tokenizer_config.h
Normal file
23175
gpt4all-backend/tokenizer/mpt_tokenizer_config.h
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,220 +1,49 @@
|
||||
#include "utils.h"
|
||||
#include "tokenizer/bpe.h"
|
||||
#include "tokenizer/mpt_tokenizer_config.h"
|
||||
#include "tokenizer/gptj_tokenizer_config.h"
|
||||
|
||||
#include <fstream>
|
||||
#include <regex>
|
||||
#include <stdexcept>
|
||||
|
||||
void replace(std::string & str, const std::string & needle, const std::string & replacement) {
|
||||
size_t pos = 0;
|
||||
while ((pos = str.find(needle, pos)) != std::string::npos) {
|
||||
str.replace(pos, needle.length(), replacement);
|
||||
pos += replacement.length();
|
||||
}
|
||||
}
|
||||
void get_bpecpp_tokenizer(const TokenizerType ttype, std::unique_ptr<bpecpp::BPE>& bpe, std::unique_ptr<bpecpp::AdditionalVocabAdapter>& av) {
|
||||
std::vector<bpecpp::additional_vocab_item> avis;
|
||||
std::unordered_map<std::string_view, uint32_t> vocab;
|
||||
std::vector<std::pair<std::string_view, std::string_view>> merges;
|
||||
|
||||
std::map<std::string, int32_t> json_parse(const std::string & fname) {
|
||||
std::map<std::string, int32_t> result;
|
||||
|
||||
// read file into string
|
||||
std::string json;
|
||||
{
|
||||
std::ifstream ifs(fname);
|
||||
if (!ifs) {
|
||||
fprintf(stderr, "Failed to open %s\n", fname.c_str());
|
||||
exit(1);
|
||||
}
|
||||
|
||||
json = std::string((std::istreambuf_iterator<char>(ifs)),
|
||||
(std::istreambuf_iterator<char>()));
|
||||
}
|
||||
|
||||
if (json[0] != '{') {
|
||||
return result;
|
||||
}
|
||||
|
||||
// parse json
|
||||
{
|
||||
bool has_key = false;
|
||||
bool in_token = false;
|
||||
|
||||
std::string str_key = "";
|
||||
std::string str_val = "";
|
||||
|
||||
int n = json.size();
|
||||
for (int i = 1; i < n; ++i) {
|
||||
if (!in_token) {
|
||||
if (json[i] == ' ') continue;
|
||||
if (json[i] == '"') {
|
||||
in_token = true;
|
||||
continue;
|
||||
}
|
||||
} else {
|
||||
if (json[i] == '\\' && i+1 < n) {
|
||||
if (has_key == false) {
|
||||
str_key += json[i];
|
||||
} else {
|
||||
str_val += json[i];
|
||||
}
|
||||
++i;
|
||||
} else if (json[i] == '"') {
|
||||
if (has_key == false) {
|
||||
has_key = true;
|
||||
++i;
|
||||
while (json[i] == ' ') ++i;
|
||||
++i; // :
|
||||
while (json[i] == ' ') ++i;
|
||||
if (json[i] != '\"') {
|
||||
while (json[i] != ',' && json[i] != '}') {
|
||||
str_val += json[i++];
|
||||
}
|
||||
has_key = false;
|
||||
} else {
|
||||
in_token = true;
|
||||
continue;
|
||||
}
|
||||
} else {
|
||||
has_key = false;
|
||||
}
|
||||
|
||||
::replace(str_key, "\\u0120", " " ); // \u0120 -> space
|
||||
::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
|
||||
::replace(str_key, "\\\"", "\""); // \\\" -> "
|
||||
|
||||
try {
|
||||
result[str_key] = std::stoi(str_val);
|
||||
} catch (...) {
|
||||
//fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
|
||||
|
||||
}
|
||||
str_key = "";
|
||||
str_val = "";
|
||||
in_token = false;
|
||||
continue;
|
||||
}
|
||||
if (has_key == false) {
|
||||
str_key += json[i];
|
||||
} else {
|
||||
str_val += json[i];
|
||||
}
|
||||
uint32_t tok_id = 0;
|
||||
switch (ttype) {
|
||||
case TokenizerType::MPT_CHAT:
|
||||
avis.push_back({ .id = 50277, .content = std::string_view("<|im_start|>"), .special = true });
|
||||
avis.push_back({ .id = 50278, .content = std::string_view("<|im_end|>"), .special = true });
|
||||
case TokenizerType::MPT:
|
||||
for (auto avi_e: mpt_additional_vocab) {
|
||||
avis.push_back({avi_e.id, avi_e.content.into(mpt_buffer), avi_e.special});
|
||||
}
|
||||
}
|
||||
for (auto merge: mpt_merges) {
|
||||
merges.push_back({merge.first.into(mpt_buffer), merge.second.into(mpt_buffer)});
|
||||
}
|
||||
for (auto bufref: mpt_vocab) {
|
||||
vocab.insert({bufref.into(mpt_buffer), tok_id++});
|
||||
}
|
||||
break;
|
||||
case TokenizerType::GPTJ:
|
||||
for (auto avi_e: gptj_additional_vocab) {
|
||||
avis.push_back({avi_e.id, avi_e.content.into(gptj_buffer), avi_e.special});
|
||||
}
|
||||
for (auto merge: gptj_merges) {
|
||||
merges.push_back({merge.first.into(gptj_buffer), merge.second.into(gptj_buffer)});
|
||||
}
|
||||
for (auto bufref: gptj_vocab) {
|
||||
vocab.insert({bufref.into(gptj_buffer), tok_id++});
|
||||
}
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument("invalid tokenizer type");
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
std::vector<gpt_vocab::id> gpt_tokenize_inner(const gpt_vocab & vocab, const std::string & text) {
|
||||
std::vector<std::string> words;
|
||||
|
||||
// first split the text into words
|
||||
{
|
||||
std::string str = text;
|
||||
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
||||
|
||||
std::regex re(pat);
|
||||
std::smatch m;
|
||||
|
||||
while (std::regex_search(str, m, re)) {
|
||||
for (auto x : m) {
|
||||
words.push_back(x);
|
||||
}
|
||||
str = m.suffix();
|
||||
}
|
||||
}
|
||||
|
||||
// find the longest tokens that form the words:
|
||||
std::vector<gpt_vocab::id> tokens;
|
||||
for (const auto & word : words) {
|
||||
if (word.size() == 0) continue;
|
||||
|
||||
int i = 0;
|
||||
int n = word.size();
|
||||
while (i < n) {
|
||||
int j = n;
|
||||
while (j > i) {
|
||||
auto it = vocab.token_to_id.find(word.substr(i, j-i));
|
||||
if (it != vocab.token_to_id.end()) {
|
||||
tokens.push_back(it->second);
|
||||
i = j;
|
||||
break;
|
||||
}
|
||||
--j;
|
||||
}
|
||||
if (i == n) {
|
||||
break;
|
||||
}
|
||||
if (j == i) {
|
||||
auto sub = word.substr(i, 1);
|
||||
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
|
||||
tokens.push_back(vocab.token_to_id.at(sub));
|
||||
} else {
|
||||
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
|
||||
}
|
||||
++i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return tokens;
|
||||
}
|
||||
|
||||
std::string regex_escape(const std::string &s) {
|
||||
static const std::regex metacharacters(R"([\.\^\$\-\+\(\)\[\]\{\}\|\?\*])");
|
||||
return std::regex_replace(s, metacharacters, "\\$&");
|
||||
}
|
||||
|
||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
|
||||
// Generate the subpattern from the special_tokens vector if it's not empty
|
||||
if (!vocab.special_tokens.empty()) {
|
||||
std::vector<gpt_vocab::id> out;
|
||||
std::vector<std::string> chunks;
|
||||
std::string str = text;
|
||||
std::string special_tokens_subpattern;
|
||||
for (const auto &token : vocab.special_tokens) {
|
||||
if (!special_tokens_subpattern.empty()) {
|
||||
special_tokens_subpattern += "|";
|
||||
}
|
||||
special_tokens_subpattern += regex_escape(token);
|
||||
}
|
||||
std::regex re(special_tokens_subpattern);
|
||||
std::smatch m;
|
||||
while (std::regex_search(str, m, re)) {
|
||||
auto tok = vocab.token_to_id.find(m.str());
|
||||
if (tok != vocab.token_to_id.end()) {
|
||||
auto tokid = tok->second;
|
||||
auto pfxtoks = gpt_tokenize_inner(vocab, m.prefix());
|
||||
out.insert(out.end(), pfxtoks.begin(), pfxtoks.end());
|
||||
out.push_back(tokid);
|
||||
str = m.suffix();
|
||||
}
|
||||
}
|
||||
if (!str.empty()) {
|
||||
auto tokrest = gpt_tokenize_inner(vocab, str);
|
||||
out.insert(out.end(), tokrest.begin(), tokrest.end());
|
||||
}
|
||||
return out;
|
||||
} else {
|
||||
return gpt_tokenize_inner(vocab, text);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
|
||||
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
|
||||
|
||||
vocab.token_to_id = ::json_parse(fname);
|
||||
|
||||
for (const auto & kv : vocab.token_to_id) {
|
||||
vocab.id_to_token[kv.second] = kv.first;
|
||||
}
|
||||
|
||||
printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
|
||||
|
||||
// print the vocabulary
|
||||
//for (auto kv : vocab.token_to_id) {
|
||||
// printf("'%s' -> %d\n", kv.first.data(), kv.second);
|
||||
//}
|
||||
|
||||
return true;
|
||||
av = std::make_unique<bpecpp::AdditionalVocabAdapter>(avis);
|
||||
bpe = std::make_unique<bpecpp::BPE>(vocab, merges);
|
||||
}
|
||||
|
||||
gpt_vocab::id gpt_sample_top_k_top_p(
|
||||
@ -313,4 +142,4 @@ gpt_vocab::id gpt_sample_top_k_top_p(
|
||||
int idx = dist(rng);
|
||||
|
||||
return logits_id[idx].second;
|
||||
}
|
||||
}
|
||||
|
@ -7,6 +7,7 @@
|
||||
#include <vector>
|
||||
#include <random>
|
||||
#include <thread>
|
||||
#include "tokenizer/bpe.h"
|
||||
|
||||
//
|
||||
// CLI argument parsing
|
||||
@ -51,26 +52,6 @@ struct gpt_vocab {
|
||||
}
|
||||
};
|
||||
|
||||
void replace(std::string & str, const std::string & needle, const std::string & replacement);
|
||||
|
||||
// poor-man's JSON parsing
|
||||
std::map<std::string, int32_t> json_parse(const std::string & fname);
|
||||
|
||||
// split text into tokens
|
||||
//
|
||||
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
|
||||
//
|
||||
// Regex (Python):
|
||||
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
|
||||
//
|
||||
// Regex (C++):
|
||||
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
|
||||
//
|
||||
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
|
||||
|
||||
// load the tokens from encoder.json
|
||||
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
|
||||
|
||||
// sample next token given probabilities for each embedding
|
||||
//
|
||||
// - consider only the top K tokens
|
||||
@ -89,3 +70,9 @@ gpt_vocab::id gpt_sample_top_k_top_p(
|
||||
double temp,
|
||||
float repeat_penalty,
|
||||
std::mt19937 & rng);
|
||||
|
||||
enum TokenizerType {
|
||||
MPT, MPT_CHAT, GPTJ
|
||||
};
|
||||
|
||||
void get_bpecpp_tokenizer(const TokenizerType ttype, std::unique_ptr<bpecpp::BPE>& bpe, std::unique_ptr<bpecpp::AdditionalVocabAdapter>& av);
|
||||
|
Loading…
Reference in New Issue
Block a user