mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2024-10-01 01:06:10 -04:00
backend: dedupe tokenizing code in mpt/gptj
This commit is contained in:
parent
6182026c70
commit
d14936bfd6
@ -983,7 +983,7 @@ void GPTJ::prompt(const std::string &prompt,
|
|||||||
gpt_vocab::id id = 0;
|
gpt_vocab::id id = 0;
|
||||||
{
|
{
|
||||||
const int64_t t_start_sample_us = ggml_time_us();
|
const int64_t t_start_sample_us = ggml_time_us();
|
||||||
id = gpt_sample_top_k_top_p(d_ptr->vocab,
|
id = gpt_sample_top_k_top_p(d_ptr->vocab, n_vocab,
|
||||||
promptCtx.tokens.data() + promptCtx.n_ctx - promptCtx.n_ctx,
|
promptCtx.tokens.data() + promptCtx.n_ctx - promptCtx.n_ctx,
|
||||||
promptCtx.n_ctx,
|
promptCtx.n_ctx,
|
||||||
promptCtx.logits,
|
promptCtx.logits,
|
||||||
|
@ -691,104 +691,6 @@ size_t mpt_copy_state_data(const mpt_model &model, const std::mt19937 &rng, uint
|
|||||||
return written;
|
return written;
|
||||||
}
|
}
|
||||||
|
|
||||||
gpt_vocab::id mpt_sample_top_k_top_p(
|
|
||||||
const gpt_vocab & vocab,
|
|
||||||
const size_t actualVocabSize,
|
|
||||||
const int32_t * last_n_tokens_data,
|
|
||||||
int last_n_tokens_size,
|
|
||||||
const std::vector<float> logits,
|
|
||||||
int top_k,
|
|
||||||
double top_p,
|
|
||||||
double temp,
|
|
||||||
float repeat_penalty,
|
|
||||||
std::mt19937 & rng) {
|
|
||||||
int n_logits = actualVocabSize;
|
|
||||||
|
|
||||||
const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);
|
|
||||||
const auto * plogits = logits.data() + logits.size() - n_logits;
|
|
||||||
|
|
||||||
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
|
||||||
logits_id.reserve(n_logits);
|
|
||||||
|
|
||||||
{
|
|
||||||
const float scale = 1.0f/temp;
|
|
||||||
for (int i = 0; i < n_logits; ++i) {
|
|
||||||
// repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
|
|
||||||
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
|
|
||||||
if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
|
|
||||||
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
|
|
||||||
if (plogits[i] < 0.0f) {
|
|
||||||
logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
|
|
||||||
} else {
|
|
||||||
logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
logits_id.push_back(std::make_pair(plogits[i]*scale, i));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// find the top K tokens
|
|
||||||
std::partial_sort(
|
|
||||||
logits_id.begin(),
|
|
||||||
logits_id.begin() + top_k, logits_id.end(),
|
|
||||||
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
|
||||||
return a.first > b.first;
|
|
||||||
});
|
|
||||||
|
|
||||||
logits_id.resize(top_k);
|
|
||||||
|
|
||||||
double maxl = -INFINITY;
|
|
||||||
for (const auto & kv : logits_id) {
|
|
||||||
maxl = std::max(maxl, kv.first);
|
|
||||||
}
|
|
||||||
|
|
||||||
// compute probs for the top K tokens
|
|
||||||
std::vector<double> probs;
|
|
||||||
probs.reserve(logits_id.size());
|
|
||||||
|
|
||||||
double sum = 0.0;
|
|
||||||
for (const auto & kv : logits_id) {
|
|
||||||
double p = exp(kv.first - maxl);
|
|
||||||
probs.push_back(p);
|
|
||||||
sum += p;
|
|
||||||
}
|
|
||||||
|
|
||||||
// normalize the probs
|
|
||||||
for (auto & p : probs) {
|
|
||||||
p /= sum;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (top_p < 1.0f) {
|
|
||||||
double cumsum = 0.0f;
|
|
||||||
for (int i = 0; i < top_k; i++) {
|
|
||||||
cumsum += probs[i];
|
|
||||||
if (cumsum >= top_p) {
|
|
||||||
top_k = i + 1;
|
|
||||||
probs.resize(top_k);
|
|
||||||
logits_id.resize(top_k);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
cumsum = 1.0/cumsum;
|
|
||||||
for (int i = 0; i < (int) probs.size(); i++) {
|
|
||||||
probs[i] *= cumsum;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
//printf("\n");
|
|
||||||
//for (int i = 0; i < (int) probs.size(); i++) {
|
|
||||||
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
|
|
||||||
//}
|
|
||||||
//exit(0);
|
|
||||||
|
|
||||||
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
|
||||||
int idx = dist(rng);
|
|
||||||
|
|
||||||
return logits_id[idx].second;
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t mpt_set_state_data(mpt_model *model, std::mt19937 *rng, const uint8_t *src)
|
size_t mpt_set_state_data(mpt_model *model, std::mt19937 *rng, const uint8_t *src)
|
||||||
{
|
{
|
||||||
const uint8_t * in = src;
|
const uint8_t * in = src;
|
||||||
@ -1006,7 +908,7 @@ void MPT::prompt(const std::string &prompt,
|
|||||||
int id = 0;
|
int id = 0;
|
||||||
{
|
{
|
||||||
const int64_t t_start_sample_us = ggml_time_us();
|
const int64_t t_start_sample_us = ggml_time_us();
|
||||||
id = mpt_sample_top_k_top_p(d_ptr->vocab, n_vocab,
|
id = gpt_sample_top_k_top_p(d_ptr->vocab, n_vocab,
|
||||||
promptCtx.tokens.data() + promptCtx.n_ctx - promptCtx.n_ctx,
|
promptCtx.tokens.data() + promptCtx.n_ctx - promptCtx.n_ctx,
|
||||||
promptCtx.n_ctx,
|
promptCtx.n_ctx,
|
||||||
promptCtx.logits,
|
promptCtx.logits,
|
||||||
|
@ -219,6 +219,7 @@ bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
|
|||||||
|
|
||||||
gpt_vocab::id gpt_sample_top_k_top_p(
|
gpt_vocab::id gpt_sample_top_k_top_p(
|
||||||
const gpt_vocab & vocab,
|
const gpt_vocab & vocab,
|
||||||
|
const size_t actualVocabSize,
|
||||||
const int32_t * last_n_tokens_data,
|
const int32_t * last_n_tokens_data,
|
||||||
int last_n_tokens_size,
|
int last_n_tokens_size,
|
||||||
const std::vector<float> logits,
|
const std::vector<float> logits,
|
||||||
@ -227,7 +228,7 @@ gpt_vocab::id gpt_sample_top_k_top_p(
|
|||||||
double temp,
|
double temp,
|
||||||
float repeat_penalty,
|
float repeat_penalty,
|
||||||
std::mt19937 & rng) {
|
std::mt19937 & rng) {
|
||||||
int n_logits = vocab.id_to_token.size();
|
int n_logits = actualVocabSize;
|
||||||
|
|
||||||
const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);
|
const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);
|
||||||
const auto * plogits = logits.data() + logits.size() - n_logits;
|
const auto * plogits = logits.data() + logits.size() - n_logits;
|
||||||
@ -312,4 +313,4 @@ gpt_vocab::id gpt_sample_top_k_top_p(
|
|||||||
int idx = dist(rng);
|
int idx = dist(rng);
|
||||||
|
|
||||||
return logits_id[idx].second;
|
return logits_id[idx].second;
|
||||||
}
|
}
|
@ -80,6 +80,7 @@ bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
|
|||||||
//
|
//
|
||||||
gpt_vocab::id gpt_sample_top_k_top_p(
|
gpt_vocab::id gpt_sample_top_k_top_p(
|
||||||
const gpt_vocab & vocab,
|
const gpt_vocab & vocab,
|
||||||
|
const size_t actualVocabSize,
|
||||||
const int32_t * last_n_tokens_data,
|
const int32_t * last_n_tokens_data,
|
||||||
int last_n_tokens_size,
|
int last_n_tokens_size,
|
||||||
const std::vector<float> logits,
|
const std::vector<float> logits,
|
||||||
|
Loading…
Reference in New Issue
Block a user