mirror of
https://github.com/nomic-ai/gpt4all.git
synced 2024-10-01 01:06:10 -04:00
Remove support for GPT-J models. (#2676)
Signed-off-by: Adam Treat <treat.adam@gmail.com> Signed-off-by: Jared Van Bortel <jared@nomic.ai> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
This commit is contained in:
parent
e2ebd1ff04
commit
ca72428783
@ -51,13 +51,11 @@ set(DIRECTORY llama.cpp-mainline)
|
|||||||
include(llama.cpp.cmake)
|
include(llama.cpp.cmake)
|
||||||
|
|
||||||
set(BUILD_VARIANTS)
|
set(BUILD_VARIANTS)
|
||||||
set(GPTJ_BUILD_VARIANT cpu)
|
|
||||||
if (APPLE)
|
if (APPLE)
|
||||||
list(APPEND BUILD_VARIANTS metal)
|
list(APPEND BUILD_VARIANTS metal)
|
||||||
endif()
|
endif()
|
||||||
if (LLMODEL_KOMPUTE)
|
if (LLMODEL_KOMPUTE)
|
||||||
list(APPEND BUILD_VARIANTS kompute kompute-avxonly)
|
list(APPEND BUILD_VARIANTS kompute kompute-avxonly)
|
||||||
set(GPTJ_BUILD_VARIANT kompute)
|
|
||||||
else()
|
else()
|
||||||
list(PREPEND BUILD_VARIANTS cpu cpu-avxonly)
|
list(PREPEND BUILD_VARIANTS cpu cpu-avxonly)
|
||||||
endif()
|
endif()
|
||||||
@ -139,12 +137,6 @@ foreach(BUILD_VARIANT IN LISTS BUILD_VARIANTS)
|
|||||||
LLAMA_VERSIONS=>=3 LLAMA_DATE=999999)
|
LLAMA_VERSIONS=>=3 LLAMA_DATE=999999)
|
||||||
prepare_target(llamamodel-mainline llama-mainline)
|
prepare_target(llamamodel-mainline llama-mainline)
|
||||||
|
|
||||||
if (BUILD_VARIANT MATCHES ${GPTJ_BUILD_VARIANT})
|
|
||||||
add_library(gptj-${BUILD_VARIANT} SHARED
|
|
||||||
gptj.cpp utils.h utils.cpp llmodel_shared.cpp llmodel_shared.h)
|
|
||||||
prepare_target(gptj llama-mainline)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
if (NOT PROJECT_IS_TOP_LEVEL AND BUILD_VARIANT STREQUAL cuda)
|
if (NOT PROJECT_IS_TOP_LEVEL AND BUILD_VARIANT STREQUAL cuda)
|
||||||
set(CUDAToolkit_BIN_DIR ${CUDAToolkit_BIN_DIR} PARENT_SCOPE)
|
set(CUDAToolkit_BIN_DIR ${CUDAToolkit_BIN_DIR} PARENT_SCOPE)
|
||||||
endif()
|
endif()
|
||||||
|
@ -1,853 +0,0 @@
|
|||||||
#define GPTJ_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
|
|
||||||
#include "gptj_impl.h"
|
|
||||||
|
|
||||||
#include "llmodel.h"
|
|
||||||
#include "llmodel_shared.h"
|
|
||||||
#include "utils.h"
|
|
||||||
|
|
||||||
#include <ggml.h>
|
|
||||||
|
|
||||||
#include <algorithm>
|
|
||||||
#include <cassert>
|
|
||||||
#include <cinttypes>
|
|
||||||
#include <cmath>
|
|
||||||
#include <cstdio>
|
|
||||||
#include <cstring>
|
|
||||||
#include <ctime>
|
|
||||||
#include <iostream>
|
|
||||||
#include <map>
|
|
||||||
#include <memory>
|
|
||||||
#include <random>
|
|
||||||
#include <sstream>
|
|
||||||
#include <stdexcept>
|
|
||||||
#include <string>
|
|
||||||
#include <thread>
|
|
||||||
#include <vector>
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
const char *modelType_ = "GPT-J";
|
|
||||||
}
|
|
||||||
|
|
||||||
// default hparams (GPT-J 6B)
|
|
||||||
struct gptj_hparams {
|
|
||||||
int32_t n_vocab = 50400;
|
|
||||||
int32_t n_ctx = 2048;
|
|
||||||
int32_t n_embd = 4096;
|
|
||||||
int32_t n_head = 16;
|
|
||||||
int32_t n_layer = 28;
|
|
||||||
int32_t n_rot = 64;
|
|
||||||
float norm_eps = 1e-5;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct gptj_layer {
|
|
||||||
// normalization
|
|
||||||
struct ggml_tensor * ln_1_g;
|
|
||||||
struct ggml_tensor * ln_1_b;
|
|
||||||
|
|
||||||
// attention
|
|
||||||
struct ggml_tensor * c_attn_q_proj_w;
|
|
||||||
struct ggml_tensor * c_attn_k_proj_w;
|
|
||||||
struct ggml_tensor * c_attn_v_proj_w;
|
|
||||||
|
|
||||||
struct ggml_tensor * c_attn_proj_w;
|
|
||||||
|
|
||||||
// ff
|
|
||||||
struct ggml_tensor * c_mlp_fc_w;
|
|
||||||
struct ggml_tensor * c_mlp_fc_b;
|
|
||||||
|
|
||||||
struct ggml_tensor * c_mlp_proj_w;
|
|
||||||
struct ggml_tensor * c_mlp_proj_b;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct gptj_model {
|
|
||||||
gptj_hparams hparams;
|
|
||||||
|
|
||||||
// normalization
|
|
||||||
struct ggml_tensor * ln_f_g;
|
|
||||||
struct ggml_tensor * ln_f_b;
|
|
||||||
|
|
||||||
struct ggml_tensor * wte; // position embedding
|
|
||||||
|
|
||||||
struct ggml_tensor * lmh_g; // language model head
|
|
||||||
struct ggml_tensor * lmh_b; // language model bias
|
|
||||||
|
|
||||||
std::vector<gptj_layer> layers;
|
|
||||||
|
|
||||||
// key + value memory
|
|
||||||
struct llm_kv_cache kv_self;
|
|
||||||
|
|
||||||
//
|
|
||||||
struct ggml_context * ctx;
|
|
||||||
std::map<std::string, struct ggml_tensor *> tensors;
|
|
||||||
|
|
||||||
llm_buffer eval_buf;
|
|
||||||
llm_buffer scr0_buf;
|
|
||||||
llm_buffer scr1_buf;
|
|
||||||
|
|
||||||
~gptj_model() {
|
|
||||||
if (ctx) {
|
|
||||||
ggml_free(ctx);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
static bool kv_cache_init(
|
|
||||||
const struct gptj_hparams & hparams,
|
|
||||||
struct llm_kv_cache & cache,
|
|
||||||
ggml_type wtype,
|
|
||||||
int n_ctx) {
|
|
||||||
const int n_embd = hparams.n_embd;
|
|
||||||
const int n_layer = hparams.n_layer;
|
|
||||||
|
|
||||||
const int64_t n_mem = (int64_t)n_layer*n_ctx;
|
|
||||||
const int64_t n_elements = n_embd*n_mem;
|
|
||||||
|
|
||||||
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2_MiB);
|
|
||||||
|
|
||||||
struct ggml_init_params params;
|
|
||||||
params.mem_size = cache.buf.size;
|
|
||||||
params.mem_buffer = cache.buf.addr;
|
|
||||||
params.no_alloc = false;
|
|
||||||
|
|
||||||
cache.ctx = ggml_init(params);
|
|
||||||
|
|
||||||
if (!cache.ctx) {
|
|
||||||
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
|
|
||||||
cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
|
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
// load the model's weights from a file path
|
|
||||||
bool gptj_model_load(const std::string &fname, gptj_model & model, gpt_vocab & vocab, size_t * mem_req = nullptr)
|
|
||||||
{
|
|
||||||
printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
|
|
||||||
if(mem_req != nullptr) {
|
|
||||||
*mem_req = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
// create the ggml context
|
|
||||||
struct gguf_init_params params = {
|
|
||||||
/*.no_alloc = */ false,
|
|
||||||
/*.ctx = */ &model.ctx,
|
|
||||||
};
|
|
||||||
|
|
||||||
gguf_context *ggufctx = gguf_init_from_file(fname.c_str(), params);
|
|
||||||
if (!ggufctx) {
|
|
||||||
fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
// load hparams
|
|
||||||
{
|
|
||||||
auto & hparams = model.hparams;
|
|
||||||
|
|
||||||
bool ok = false;
|
|
||||||
int keyidx;
|
|
||||||
|
|
||||||
do {
|
|
||||||
keyidx = gguf_find_key(ggufctx, "gptj.context_length");
|
|
||||||
if (keyidx == -1) { break; }
|
|
||||||
hparams.n_ctx = gguf_get_val_u32(ggufctx, keyidx);
|
|
||||||
|
|
||||||
keyidx = gguf_find_key(ggufctx, "gptj.embedding_length");
|
|
||||||
if (keyidx == -1) { break; }
|
|
||||||
hparams.n_embd = gguf_get_val_u32(ggufctx, keyidx);
|
|
||||||
|
|
||||||
keyidx = gguf_find_key(ggufctx, "gptj.attention.head_count");
|
|
||||||
if (keyidx == -1) { break; }
|
|
||||||
hparams.n_head = gguf_get_val_u32(ggufctx, keyidx);
|
|
||||||
|
|
||||||
keyidx = gguf_find_key(ggufctx, "gptj.block_count");
|
|
||||||
if (keyidx == -1) { break; }
|
|
||||||
hparams.n_layer = gguf_get_val_u32(ggufctx, keyidx);
|
|
||||||
|
|
||||||
keyidx = gguf_find_key(ggufctx, "gptj.rope.dimension_count");
|
|
||||||
if (keyidx == -1) { break; }
|
|
||||||
hparams.n_rot = gguf_get_val_u32(ggufctx, keyidx);
|
|
||||||
|
|
||||||
keyidx = gguf_find_key(ggufctx, "gptj.attention.layer_norm_epsilon");
|
|
||||||
if (keyidx == -1) { break; }
|
|
||||||
hparams.norm_eps = gguf_get_val_f32(ggufctx, keyidx);
|
|
||||||
|
|
||||||
ok = true;
|
|
||||||
} while (false);
|
|
||||||
|
|
||||||
if (!ok) {
|
|
||||||
fprintf(stderr, "%s: required hparam missing!\n", __func__);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
|
||||||
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
|
||||||
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
|
||||||
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
|
||||||
printf("%s: n_rot = %d\n", __func__, hparams.n_rot);
|
|
||||||
}
|
|
||||||
|
|
||||||
// load vocab
|
|
||||||
{
|
|
||||||
auto & hparams = model.hparams;
|
|
||||||
|
|
||||||
int keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.model");
|
|
||||||
if (keyidx == -1) {
|
|
||||||
fprintf(stderr, "%s: tokenizer model not found!\n", __func__);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
if (strcmp(gguf_get_val_str(ggufctx, keyidx), "gpt2") != 0) {
|
|
||||||
fprintf(stderr, "%s: tokenizer model not supported!\n", __func__);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
int tokens_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.tokens");
|
|
||||||
if (tokens_keyidx == -1) {
|
|
||||||
fprintf(stderr, "%s: gpt2 tokenizer vocab not found!\n", __func__);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
hparams.n_vocab = gguf_get_arr_n(ggufctx, tokens_keyidx);
|
|
||||||
printf("%s: gpt2 tokenizer vocab = %d\n", __func__, int(hparams.n_vocab));
|
|
||||||
|
|
||||||
for (int i = 0; i < hparams.n_vocab; i++) {
|
|
||||||
std::string word = gguf_get_arr_str(ggufctx, tokens_keyidx, i);
|
|
||||||
vocab.token_to_id[word] = i;
|
|
||||||
vocab.id_to_token[i] = word;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
auto & ctx = model.ctx;
|
|
||||||
|
|
||||||
size_t ctx_size = ggml_get_mem_size(ctx);
|
|
||||||
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size / (1024.0 * 1024.0));
|
|
||||||
|
|
||||||
if (mem_req != nullptr) {
|
|
||||||
*mem_req = ctx_size;
|
|
||||||
gguf_free(ggufctx);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
// prepare memory for the weights
|
|
||||||
{
|
|
||||||
const auto & hparams = model.hparams;
|
|
||||||
model.layers.resize(hparams.n_layer);
|
|
||||||
|
|
||||||
model.wte = ggml_get_tensor(ctx, "token_embd.weight");
|
|
||||||
|
|
||||||
model.ln_f_g = ggml_get_tensor(ctx, "output_norm.weight");
|
|
||||||
model.ln_f_b = ggml_get_tensor(ctx, "output_norm.bias");
|
|
||||||
|
|
||||||
model.lmh_g = ggml_get_tensor(ctx, "output.weight");
|
|
||||||
model.lmh_b = ggml_get_tensor(ctx, "output.bias");
|
|
||||||
|
|
||||||
auto name = [](int i, std::string n) {
|
|
||||||
static std::string key;
|
|
||||||
key = "blk." + std::to_string(i) + "." + n;
|
|
||||||
return key.c_str();
|
|
||||||
};
|
|
||||||
|
|
||||||
for (int i = 0; i < hparams.n_layer; ++i) {
|
|
||||||
auto & layer = model.layers[i];
|
|
||||||
|
|
||||||
layer.ln_1_g = ggml_get_tensor(ctx, name(i, "attn_norm.weight"));
|
|
||||||
layer.ln_1_b = ggml_get_tensor(ctx, name(i, "attn_norm.bias"));
|
|
||||||
|
|
||||||
layer.c_attn_q_proj_w = ggml_get_tensor(ctx, name(i, "attn_q.weight"));
|
|
||||||
layer.c_attn_k_proj_w = ggml_get_tensor(ctx, name(i, "attn_k.weight"));
|
|
||||||
layer.c_attn_v_proj_w = ggml_get_tensor(ctx, name(i, "attn_v.weight"));
|
|
||||||
|
|
||||||
layer.c_attn_proj_w = ggml_get_tensor(ctx, name(i, "attn_output.weight"));
|
|
||||||
|
|
||||||
layer.c_mlp_fc_w = ggml_get_tensor(ctx, name(i, "ffn_up.weight"));
|
|
||||||
layer.c_mlp_fc_b = ggml_get_tensor(ctx, name(i, "ffn_up.bias"));
|
|
||||||
|
|
||||||
layer.c_mlp_proj_w = ggml_get_tensor(ctx, name(i, "ffn_down.weight"));
|
|
||||||
layer.c_mlp_proj_b = ggml_get_tensor(ctx, name(i, "ffn_down.bias"));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// key + value memory
|
|
||||||
{
|
|
||||||
const auto & hparams = model.hparams;
|
|
||||||
if (!kv_cache_init(hparams, model.kv_self, GGML_TYPE_F16, model.hparams.n_ctx)) {
|
|
||||||
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
|
|
||||||
ggml_free(ctx);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
const size_t memory_size = ggml_nbytes(model.kv_self.k) + ggml_nbytes(model.kv_self.v);
|
|
||||||
printf("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
|
|
||||||
}
|
|
||||||
|
|
||||||
model.scr0_buf.resize(256u * 1024 * 1024);
|
|
||||||
model.scr1_buf.resize(256u * 1024 * 1024);
|
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
// evaluate the transformer
|
|
||||||
//
|
|
||||||
// - model: the model
|
|
||||||
// - n_threads: number of threads to use
|
|
||||||
// - n_past: the context size so far
|
|
||||||
// - embd_inp: the embeddings of the tokens in the context
|
|
||||||
// - embd_w: the predicted logits for the next token
|
|
||||||
//
|
|
||||||
// The GPT-J model requires about 16MB of memory per input token.
|
|
||||||
//
|
|
||||||
bool gptj_eval(
|
|
||||||
gptj_model & model,
|
|
||||||
const int n_threads,
|
|
||||||
const int n_past,
|
|
||||||
const std::vector<gpt_vocab::id> & embd_inp,
|
|
||||||
std::vector<float> & embd_w,
|
|
||||||
size_t & mem_per_token) {
|
|
||||||
const int N = embd_inp.size();
|
|
||||||
|
|
||||||
const auto & hparams = model.hparams;
|
|
||||||
|
|
||||||
const int n_embd = hparams.n_embd;
|
|
||||||
const int n_layer = hparams.n_layer;
|
|
||||||
const int n_ctx = hparams.n_ctx;
|
|
||||||
const int n_head = hparams.n_head;
|
|
||||||
const int n_vocab = hparams.n_vocab;
|
|
||||||
const int n_rot = hparams.n_rot;
|
|
||||||
|
|
||||||
const size_t init_buf_size = 1024_MiB;
|
|
||||||
if (!model.eval_buf.addr || model.eval_buf.size < init_buf_size)
|
|
||||||
model.eval_buf.resize(init_buf_size);
|
|
||||||
|
|
||||||
if (mem_per_token > 0 && mem_per_token*N > model.eval_buf.size) {
|
|
||||||
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
|
|
||||||
printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, model.eval_buf.size, buf_size_new);
|
|
||||||
|
|
||||||
// reallocate
|
|
||||||
model.eval_buf.resize(buf_size_new);
|
|
||||||
if (model.eval_buf.addr == nullptr) {
|
|
||||||
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, model.eval_buf.size);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
struct ggml_init_params params = {
|
|
||||||
.mem_size = model.eval_buf.size,
|
|
||||||
.mem_buffer = model.eval_buf.addr,
|
|
||||||
.no_alloc = false
|
|
||||||
};
|
|
||||||
|
|
||||||
struct ggml_context * ctx0 = ggml_init(params);
|
|
||||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
|
||||||
|
|
||||||
// KQ_pos - contains the positions
|
|
||||||
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
|
||||||
int * data = (int *) KQ_pos->data;
|
|
||||||
for (int i = 0; i < N; ++i) {
|
|
||||||
data[i] = n_past + i;
|
|
||||||
}
|
|
||||||
|
|
||||||
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
|
||||||
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
|
|
||||||
|
|
||||||
// wte
|
|
||||||
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd);
|
|
||||||
|
|
||||||
for (int il = 0; il < n_layer; ++il) {
|
|
||||||
struct ggml_tensor * cur;
|
|
||||||
ggml_set_scratch(ctx0, {0, model.scr0_buf.size, model.scr0_buf.addr, });
|
|
||||||
// norm
|
|
||||||
{
|
|
||||||
cur = ggml_norm(ctx0, inpL, model.hparams.norm_eps);
|
|
||||||
|
|
||||||
// cur = ln_1_g*cur + ln_1_b
|
|
||||||
cur = ggml_add(ctx0,
|
|
||||||
ggml_mul(ctx0,
|
|
||||||
ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
|
|
||||||
cur),
|
|
||||||
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
|
|
||||||
}
|
|
||||||
|
|
||||||
struct ggml_tensor * inpSA = cur;
|
|
||||||
|
|
||||||
// self-attention
|
|
||||||
{
|
|
||||||
struct ggml_tensor * Qcur = ggml_rope(
|
|
||||||
ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_q_proj_w, cur), n_embd/n_head, n_head, N),
|
|
||||||
KQ_pos, n_rot, 0, 0
|
|
||||||
);
|
|
||||||
struct ggml_tensor * Kcur = ggml_rope(
|
|
||||||
ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_k_proj_w, cur), n_embd/n_head, n_head, N),
|
|
||||||
KQ_pos, n_rot, 0, 0
|
|
||||||
);
|
|
||||||
|
|
||||||
// store key and value to memory
|
|
||||||
{
|
|
||||||
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_mul_mat(ctx0, model.layers[il].c_attn_v_proj_w, cur));
|
|
||||||
|
|
||||||
struct ggml_tensor * k = ggml_view_1d(ctx0, model.kv_self.k, N*n_embd, (ggml_element_size(model.kv_self.k)*n_embd)*(il*n_ctx + n_past));
|
|
||||||
struct ggml_tensor * v = ggml_view_2d(ctx0, model.kv_self.v, N, n_embd,
|
|
||||||
( n_ctx)*ggml_element_size(model.kv_self.v),
|
|
||||||
(il*n_ctx)*ggml_element_size(model.kv_self.v)*n_embd + n_past*ggml_element_size(model.kv_self.v));
|
|
||||||
|
|
||||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
|
|
||||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
|
|
||||||
}
|
|
||||||
|
|
||||||
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
|
|
||||||
struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
|
||||||
|
|
||||||
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
|
|
||||||
struct ggml_tensor * K =
|
|
||||||
ggml_permute(ctx0,
|
|
||||||
ggml_reshape_3d(ctx0,
|
|
||||||
ggml_view_1d(ctx0, model.kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.kv_self.k)*n_embd),
|
|
||||||
n_embd/n_head, n_head, n_past + N),
|
|
||||||
0, 2, 1, 3);
|
|
||||||
|
|
||||||
// K * Q
|
|
||||||
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
|
||||||
|
|
||||||
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
|
||||||
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrt(float(n_embd)/n_head));
|
|
||||||
|
|
||||||
// KQ_masked = mask_past(KQ_scaled)
|
|
||||||
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
|
|
||||||
|
|
||||||
// KQ = soft_max(KQ_masked)
|
|
||||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
|
|
||||||
|
|
||||||
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
|
|
||||||
struct ggml_tensor * V =
|
|
||||||
ggml_view_3d(ctx0, model.kv_self.v,
|
|
||||||
n_past + N, n_embd/n_head, n_head,
|
|
||||||
n_ctx*ggml_element_size(model.kv_self.v),
|
|
||||||
n_ctx*ggml_element_size(model.kv_self.v)*n_embd/n_head,
|
|
||||||
il*n_ctx*ggml_element_size(model.kv_self.v)*n_embd);
|
|
||||||
|
|
||||||
// KQV = transpose(V) * KQ_soft_max
|
|
||||||
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
|
|
||||||
|
|
||||||
// KQV_merged = KQV.permute(0, 2, 1, 3)
|
|
||||||
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
|
||||||
|
|
||||||
// cur = KQV_merged.contiguous().view(n_embd, N)
|
|
||||||
cur = ggml_cpy(ctx0,
|
|
||||||
KQV_merged,
|
|
||||||
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
|
||||||
|
|
||||||
// projection (no bias)
|
|
||||||
cur = ggml_mul_mat(ctx0,
|
|
||||||
model.layers[il].c_attn_proj_w,
|
|
||||||
cur);
|
|
||||||
}
|
|
||||||
|
|
||||||
struct ggml_tensor * inpFF = cur;
|
|
||||||
|
|
||||||
ggml_set_scratch(ctx0, {0, model.scr1_buf.size, model.scr1_buf.addr, });
|
|
||||||
// feed-forward network
|
|
||||||
// this is independent of the self-attention result, so it could be done in parallel to the self-attention
|
|
||||||
{
|
|
||||||
// note here we pass inpSA instead of cur
|
|
||||||
cur = ggml_mul_mat(ctx0,
|
|
||||||
model.layers[il].c_mlp_fc_w,
|
|
||||||
inpSA);
|
|
||||||
|
|
||||||
cur = ggml_add(ctx0,
|
|
||||||
ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur),
|
|
||||||
cur);
|
|
||||||
|
|
||||||
// GELU activation
|
|
||||||
cur = ggml_gelu(ctx0, cur);
|
|
||||||
|
|
||||||
// projection
|
|
||||||
// cur = proj_w*cur + proj_b
|
|
||||||
cur = ggml_mul_mat(ctx0,
|
|
||||||
model.layers[il].c_mlp_proj_w,
|
|
||||||
cur);
|
|
||||||
|
|
||||||
cur = ggml_add(ctx0,
|
|
||||||
ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur),
|
|
||||||
cur);
|
|
||||||
}
|
|
||||||
|
|
||||||
// self-attention + FF
|
|
||||||
cur = ggml_add(ctx0, cur, inpFF);
|
|
||||||
|
|
||||||
// input for next layer
|
|
||||||
inpL = ggml_add(ctx0, cur, inpL);
|
|
||||||
}
|
|
||||||
|
|
||||||
ggml_set_scratch(ctx0, {0, model.scr0_buf.size, model.scr0_buf.addr, });
|
|
||||||
|
|
||||||
// norm
|
|
||||||
{
|
|
||||||
inpL = ggml_norm(ctx0, inpL, model.hparams.norm_eps);
|
|
||||||
|
|
||||||
// inpL = ln_f_g*inpL + ln_f_b
|
|
||||||
inpL = ggml_add(ctx0,
|
|
||||||
ggml_mul(ctx0,
|
|
||||||
ggml_repeat(ctx0, model.ln_f_g, inpL),
|
|
||||||
inpL),
|
|
||||||
ggml_repeat(ctx0, model.ln_f_b, inpL));
|
|
||||||
}
|
|
||||||
|
|
||||||
ggml_set_scratch(ctx0, { 0, 0, nullptr, });
|
|
||||||
|
|
||||||
// lm_head
|
|
||||||
{
|
|
||||||
inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL);
|
|
||||||
|
|
||||||
inpL = ggml_add(ctx0,
|
|
||||||
ggml_repeat(ctx0, model.lmh_b, inpL),
|
|
||||||
inpL);
|
|
||||||
}
|
|
||||||
|
|
||||||
// logits -> probs
|
|
||||||
//inpL = ggml_soft_max(ctx0, inpL);
|
|
||||||
|
|
||||||
ggml_build_forward_expand(gf, inpL);
|
|
||||||
|
|
||||||
// run the computation
|
|
||||||
{
|
|
||||||
std::unique_ptr<uint8_t []> data;
|
|
||||||
auto plan = ggml_graph_plan(gf, n_threads);
|
|
||||||
if (plan.work_size > 0) {
|
|
||||||
data.reset(new uint8_t[plan.work_size]);
|
|
||||||
plan.work_data = data.get();
|
|
||||||
}
|
|
||||||
ggml_graph_compute(gf, &plan);
|
|
||||||
}
|
|
||||||
|
|
||||||
//if (n_past%100 == 0) {
|
|
||||||
// ggml_graph_print (gf);
|
|
||||||
// ggml_graph_dump_dot(gf, NULL, "gpt-2.dot");
|
|
||||||
//}
|
|
||||||
|
|
||||||
//embd_w.resize(n_vocab*N);
|
|
||||||
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
|
|
||||||
|
|
||||||
// return result for just the last token
|
|
||||||
embd_w.resize(n_vocab);
|
|
||||||
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
|
|
||||||
|
|
||||||
if (mem_per_token == 0) {
|
|
||||||
mem_per_token = ggml_used_mem(ctx0)/N;
|
|
||||||
}
|
|
||||||
//printf("used_mem = %zu\n", ggml_used_mem(ctx0));
|
|
||||||
|
|
||||||
ggml_free(ctx0);
|
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
#define GPTJ_MAX_RNG_STATE 64*1024
|
|
||||||
|
|
||||||
size_t gptj_get_state_size(const gptj_model &model)
|
|
||||||
{
|
|
||||||
// we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
|
|
||||||
// for reference, std::mt19937(1337) serializes to 6701 bytes.
|
|
||||||
const size_t s_rng_size = sizeof(size_t);
|
|
||||||
const size_t s_rng = GPTJ_MAX_RNG_STATE;
|
|
||||||
const size_t s_kv_size = sizeof(size_t);
|
|
||||||
const size_t s_kv_ntok = sizeof(int);
|
|
||||||
const size_t s_kv = model.kv_self.buf.size;
|
|
||||||
const size_t s_total = (
|
|
||||||
+ s_rng_size
|
|
||||||
+ s_rng
|
|
||||||
+ s_kv_size
|
|
||||||
+ s_kv_ntok
|
|
||||||
+ s_kv
|
|
||||||
);
|
|
||||||
fflush(stdout);
|
|
||||||
return s_total;
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t gptj_copy_state_data(const gptj_model &model, const std::mt19937 &rng, uint8_t *dest)
|
|
||||||
{
|
|
||||||
uint8_t * out = dest;
|
|
||||||
fflush(stdout);
|
|
||||||
// copy rng
|
|
||||||
{
|
|
||||||
std::stringstream rng_ss;
|
|
||||||
rng_ss << rng;
|
|
||||||
|
|
||||||
const size_t rng_size = rng_ss.str().size();
|
|
||||||
char rng_buf[GPTJ_MAX_RNG_STATE];
|
|
||||||
|
|
||||||
memset(&rng_buf[0], 0, GPTJ_MAX_RNG_STATE);
|
|
||||||
memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
|
|
||||||
|
|
||||||
memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
|
|
||||||
memcpy(out, &rng_buf[0], GPTJ_MAX_RNG_STATE); out += GPTJ_MAX_RNG_STATE;
|
|
||||||
}
|
|
||||||
|
|
||||||
// copy kv cache
|
|
||||||
{
|
|
||||||
const size_t kv_size = model.kv_self.buf.size;
|
|
||||||
const int kv_ntok = model.kv_self.n;
|
|
||||||
|
|
||||||
memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
|
|
||||||
memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
|
|
||||||
|
|
||||||
if (kv_size) {
|
|
||||||
memcpy(out, model.kv_self.buf.addr, kv_size); out += kv_size;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
const size_t written = out - dest;
|
|
||||||
assert(written == gptj_get_state_size(model));
|
|
||||||
fflush(stdout);
|
|
||||||
return written;
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t gptj_set_state_data(gptj_model *model, std::mt19937 *rng, const uint8_t *src)
|
|
||||||
{
|
|
||||||
const uint8_t * in = src;
|
|
||||||
|
|
||||||
// set rng
|
|
||||||
{
|
|
||||||
size_t rng_size;
|
|
||||||
char rng_buf[GPTJ_MAX_RNG_STATE];
|
|
||||||
|
|
||||||
memcpy(&rng_size, in, sizeof(rng_size)); in += sizeof(rng_size);
|
|
||||||
memcpy(&rng_buf[0], in, GPTJ_MAX_RNG_STATE); in += GPTJ_MAX_RNG_STATE;
|
|
||||||
|
|
||||||
std::stringstream rng_ss;
|
|
||||||
rng_ss.str(std::string(&rng_buf[0], rng_size));
|
|
||||||
rng_ss >> *rng;
|
|
||||||
|
|
||||||
assert(rng_ss.fail() == false);
|
|
||||||
}
|
|
||||||
|
|
||||||
// set kv cache
|
|
||||||
{
|
|
||||||
size_t kv_size;
|
|
||||||
int kv_ntok;
|
|
||||||
|
|
||||||
memcpy(&kv_size, in, sizeof(kv_size)); in += sizeof(kv_size);
|
|
||||||
memcpy(&kv_ntok, in, sizeof(kv_ntok)); in += sizeof(kv_ntok);
|
|
||||||
|
|
||||||
if (kv_size) {
|
|
||||||
assert(model->kv_self.buf.size == kv_size);
|
|
||||||
|
|
||||||
void * k_data = model->kv_self.k->data; // remember data pointers
|
|
||||||
void * v_data = model->kv_self.v->data; // because their value is stored in buf and overwritten by memcpy
|
|
||||||
|
|
||||||
memcpy(model->kv_self.buf.addr, in, kv_size); in += kv_size;
|
|
||||||
|
|
||||||
model->kv_self.k->data = k_data; // restore correct data pointers
|
|
||||||
model->kv_self.v->data = v_data;
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
model->kv_self.n = kv_ntok;
|
|
||||||
}
|
|
||||||
|
|
||||||
const size_t nread = in - src;
|
|
||||||
assert(nread == gptj_get_state_size(*model));
|
|
||||||
fflush(stdout);
|
|
||||||
return nread;
|
|
||||||
}
|
|
||||||
|
|
||||||
struct GPTJPrivate {
|
|
||||||
const std::string modelPath;
|
|
||||||
bool modelLoaded;
|
|
||||||
gpt_vocab vocab;
|
|
||||||
gptj_model *model = nullptr;
|
|
||||||
int64_t n_threads = 0;
|
|
||||||
size_t mem_per_token = 0;
|
|
||||||
std::mt19937 rng;
|
|
||||||
};
|
|
||||||
|
|
||||||
GPTJ::GPTJ()
|
|
||||||
: d_ptr(new GPTJPrivate) {
|
|
||||||
d_ptr->model = new gptj_model;
|
|
||||||
d_ptr->model->ctx = nullptr;
|
|
||||||
d_ptr->modelLoaded = false;
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t GPTJ::requiredMem(const std::string &modelPath, int n_ctx, int ngl)
|
|
||||||
{
|
|
||||||
(void)n_ctx;
|
|
||||||
(void)ngl;
|
|
||||||
gptj_model dummy_model;
|
|
||||||
gpt_vocab dummy_vocab;
|
|
||||||
size_t mem_req;
|
|
||||||
gptj_model_load(modelPath, dummy_model, dummy_vocab, &mem_req);
|
|
||||||
return mem_req;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool GPTJ::loadModel(const std::string &modelPath, int n_ctx, int ngl)
|
|
||||||
{
|
|
||||||
(void)n_ctx;
|
|
||||||
(void)ngl;
|
|
||||||
d_ptr->modelLoaded = false;
|
|
||||||
|
|
||||||
std::mt19937 rng(time(NULL));
|
|
||||||
d_ptr->rng = rng;
|
|
||||||
|
|
||||||
// load the model
|
|
||||||
bool ok = gptj_model_load(modelPath, *d_ptr->model, d_ptr->vocab);
|
|
||||||
fflush(stdout);
|
|
||||||
if (!ok) {
|
|
||||||
std::cerr << "GPT-J ERROR: failed to load model from " << modelPath;
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
|
||||||
d_ptr->modelLoaded = true;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
void GPTJ::setThreadCount(int32_t n_threads)
|
|
||||||
{
|
|
||||||
d_ptr->n_threads = n_threads;
|
|
||||||
}
|
|
||||||
|
|
||||||
int32_t GPTJ::threadCount() const
|
|
||||||
{
|
|
||||||
return d_ptr->n_threads;
|
|
||||||
}
|
|
||||||
|
|
||||||
GPTJ::~GPTJ()
|
|
||||||
{
|
|
||||||
delete d_ptr->model;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool GPTJ::isModelLoaded() const
|
|
||||||
{
|
|
||||||
return d_ptr->modelLoaded;
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t GPTJ::stateSize() const
|
|
||||||
{
|
|
||||||
return gptj_get_state_size(*d_ptr->model);
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t GPTJ::saveState(uint8_t *dest) const
|
|
||||||
{
|
|
||||||
return gptj_copy_state_data(*d_ptr->model, d_ptr->rng, dest);
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t GPTJ::restoreState(const uint8_t *src)
|
|
||||||
{
|
|
||||||
return gptj_set_state_data(d_ptr->model, &d_ptr->rng, src);
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<LLModel::Token> GPTJ::tokenize(PromptContext &ctx, const std::string &str, bool special) const
|
|
||||||
{
|
|
||||||
(void)ctx;
|
|
||||||
(void)special;
|
|
||||||
return ::gpt_tokenize(d_ptr->vocab, str);
|
|
||||||
}
|
|
||||||
|
|
||||||
LLModel::Token GPTJ::sampleToken(PromptContext &promptCtx) const
|
|
||||||
{
|
|
||||||
const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size());
|
|
||||||
return gpt_sample_top_k_top_p(d_ptr->model->hparams.n_vocab,
|
|
||||||
promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks,
|
|
||||||
n_prev_toks,
|
|
||||||
promptCtx.logits,
|
|
||||||
promptCtx.top_k, promptCtx.top_p, promptCtx.temp,
|
|
||||||
promptCtx.repeat_penalty,
|
|
||||||
d_ptr->rng);
|
|
||||||
}
|
|
||||||
|
|
||||||
std::string GPTJ::tokenToString(Token id) const
|
|
||||||
{
|
|
||||||
return d_ptr->vocab.id_to_token[id];
|
|
||||||
}
|
|
||||||
|
|
||||||
bool GPTJ::evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const
|
|
||||||
{
|
|
||||||
// determine the required inference memory per token:
|
|
||||||
static bool initialized = false;
|
|
||||||
if (!initialized) {
|
|
||||||
gptj_eval(*d_ptr->model, d_ptr->n_threads, 0, { 0, 1, 2, 3 }, ctx.logits,
|
|
||||||
d_ptr->mem_per_token);
|
|
||||||
initialized = true;
|
|
||||||
}
|
|
||||||
|
|
||||||
return gptj_eval(*d_ptr->model, d_ptr->n_threads, ctx.n_past, tokens, ctx.logits, d_ptr->mem_per_token);
|
|
||||||
}
|
|
||||||
|
|
||||||
int32_t GPTJ::contextLength() const
|
|
||||||
{
|
|
||||||
return d_ptr->model->hparams.n_ctx;
|
|
||||||
}
|
|
||||||
|
|
||||||
const std::vector<LLModel::Token> &GPTJ::endTokens() const
|
|
||||||
{
|
|
||||||
static const std::vector<LLModel::Token> fres = {50256};
|
|
||||||
return fres;
|
|
||||||
}
|
|
||||||
|
|
||||||
const char *get_arch_name(gguf_context *ctx_gguf)
|
|
||||||
{
|
|
||||||
const int kid = gguf_find_key(ctx_gguf, "general.architecture");
|
|
||||||
if (kid == -1)
|
|
||||||
throw std::runtime_error("key not found in model: general.architecture");
|
|
||||||
|
|
||||||
enum gguf_type ktype = gguf_get_kv_type(ctx_gguf, kid);
|
|
||||||
if (ktype != GGUF_TYPE_STRING)
|
|
||||||
throw std::runtime_error("key general.architecture has wrong type");
|
|
||||||
|
|
||||||
return gguf_get_val_str(ctx_gguf, kid);
|
|
||||||
}
|
|
||||||
|
|
||||||
#if defined(_WIN32)
|
|
||||||
#define DLL_EXPORT __declspec(dllexport)
|
|
||||||
#else
|
|
||||||
#define DLL_EXPORT __attribute__ ((visibility ("default")))
|
|
||||||
#endif
|
|
||||||
|
|
||||||
extern "C" {
|
|
||||||
DLL_EXPORT bool is_g4a_backend_model_implementation()
|
|
||||||
{
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
DLL_EXPORT const char *get_model_type()
|
|
||||||
{
|
|
||||||
return modelType_;
|
|
||||||
}
|
|
||||||
|
|
||||||
DLL_EXPORT const char *get_build_variant()
|
|
||||||
{
|
|
||||||
return GGML_BUILD_VARIANT;
|
|
||||||
}
|
|
||||||
|
|
||||||
DLL_EXPORT char *get_file_arch(const char *fname)
|
|
||||||
{
|
|
||||||
struct ggml_context * ctx_meta = NULL;
|
|
||||||
struct gguf_init_params params = {
|
|
||||||
/*.no_alloc = */ true,
|
|
||||||
/*.ctx = */ &ctx_meta,
|
|
||||||
};
|
|
||||||
gguf_context *ctx_gguf = gguf_init_from_file(fname, params);
|
|
||||||
|
|
||||||
char *arch = nullptr;
|
|
||||||
if (ctx_gguf && gguf_get_version(ctx_gguf) <= 3) {
|
|
||||||
try {
|
|
||||||
arch = strdup(get_arch_name(ctx_gguf));
|
|
||||||
} catch (const std::runtime_error &) {
|
|
||||||
// cannot read key -> return null
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
gguf_free(ctx_gguf);
|
|
||||||
return arch;
|
|
||||||
}
|
|
||||||
|
|
||||||
DLL_EXPORT bool is_arch_supported(const char *arch)
|
|
||||||
{
|
|
||||||
return !strcmp(arch, "gptj");
|
|
||||||
}
|
|
||||||
|
|
||||||
DLL_EXPORT LLModel *construct()
|
|
||||||
{
|
|
||||||
return new GPTJ;
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,43 +0,0 @@
|
|||||||
#ifndef GPTJ_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
|
|
||||||
#error This file is NOT meant to be included outside of gptj.cpp. Doing so is DANGEROUS. Be sure to know what you are doing before proceeding to #define GPTJ_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE
|
|
||||||
#endif
|
|
||||||
#ifndef GPTJ_H
|
|
||||||
#define GPTJ_H
|
|
||||||
|
|
||||||
#include "llmodel.h"
|
|
||||||
|
|
||||||
#include <functional>
|
|
||||||
#include <string>
|
|
||||||
#include <vector>
|
|
||||||
|
|
||||||
struct GPTJPrivate;
|
|
||||||
class GPTJ : public LLModel {
|
|
||||||
public:
|
|
||||||
GPTJ();
|
|
||||||
~GPTJ();
|
|
||||||
|
|
||||||
bool supportsEmbedding() const override { return false; }
|
|
||||||
bool supportsCompletion() const override { return true; }
|
|
||||||
bool loadModel(const std::string &modelPath, int n_ctx, int ngl) override;
|
|
||||||
bool isModelLoaded() const override;
|
|
||||||
size_t requiredMem(const std::string &modelPath, int n_ctx, int ngl) override;
|
|
||||||
size_t stateSize() const override;
|
|
||||||
size_t saveState(uint8_t *dest) const override;
|
|
||||||
size_t restoreState(const uint8_t *src) override;
|
|
||||||
void setThreadCount(int32_t n_threads) override;
|
|
||||||
int32_t threadCount() const override;
|
|
||||||
|
|
||||||
private:
|
|
||||||
GPTJPrivate *d_ptr;
|
|
||||||
|
|
||||||
protected:
|
|
||||||
std::vector<Token> tokenize(PromptContext &ctx, const std::string &str, bool special) const override;
|
|
||||||
Token sampleToken(PromptContext &ctx) const override;
|
|
||||||
std::string tokenToString(Token id) const override;
|
|
||||||
bool evalTokens(PromptContext &ctx, const std::vector<int32_t> &tokens) const override;
|
|
||||||
int32_t contextLength() const override;
|
|
||||||
const std::vector<Token> &endTokens() const override;
|
|
||||||
bool shouldAddBOS() const override { return false; }
|
|
||||||
};
|
|
||||||
|
|
||||||
#endif // GPTJ_H
|
|
@ -130,7 +130,7 @@ const std::vector<LLModel::Implementation> &LLModel::Implementation::implementat
|
|||||||
|
|
||||||
addCudaSearchPath();
|
addCudaSearchPath();
|
||||||
|
|
||||||
std::string impl_name_re = "(gptj|llamamodel-mainline)-(cpu|metal|kompute|vulkan|cuda)";
|
std::string impl_name_re = "llamamodel-mainline-(cpu|metal|kompute|vulkan|cuda)";
|
||||||
if (cpu_supports_avx2() == 0) {
|
if (cpu_supports_avx2() == 0) {
|
||||||
impl_name_re += "-avxonly";
|
impl_name_re += "-avxonly";
|
||||||
}
|
}
|
||||||
|
@ -122,7 +122,6 @@ public:
|
|||||||
};
|
};
|
||||||
|
|
||||||
struct PromptContext {
|
struct PromptContext {
|
||||||
std::vector<float> logits; // logits of current context
|
|
||||||
std::vector<int32_t> tokens; // current tokens in the context window
|
std::vector<int32_t> tokens; // current tokens in the context window
|
||||||
int32_t n_past = 0; // number of tokens in past conversation
|
int32_t n_past = 0; // number of tokens in past conversation
|
||||||
int32_t n_ctx = 0; // number of tokens possible in context window
|
int32_t n_ctx = 0; // number of tokens possible in context window
|
||||||
|
@ -143,8 +143,6 @@ void llmodel_prompt(llmodel_model model, const char *prompt,
|
|||||||
|
|
||||||
// Update the C context by giving access to the wrappers raw pointers to std::vector data
|
// Update the C context by giving access to the wrappers raw pointers to std::vector data
|
||||||
// which involves no copies
|
// which involves no copies
|
||||||
ctx->logits = wrapper->promptContext.logits.data();
|
|
||||||
ctx->logits_size = wrapper->promptContext.logits.size();
|
|
||||||
ctx->tokens = wrapper->promptContext.tokens.data();
|
ctx->tokens = wrapper->promptContext.tokens.data();
|
||||||
ctx->tokens_size = wrapper->promptContext.tokens.size();
|
ctx->tokens_size = wrapper->promptContext.tokens.size();
|
||||||
|
|
||||||
|
@ -1,140 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
import json
|
|
||||||
import struct
|
|
||||||
import sys
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import gguf
|
|
||||||
import numpy as np
|
|
||||||
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
|
||||||
|
|
||||||
|
|
||||||
if not 2 <= len(sys.argv) < 4:
|
|
||||||
print("Usage: {} dir-model [ftype]\n".format(Path(__file__).name))
|
|
||||||
print(" ftype == 0 -> float32")
|
|
||||||
print(" ftype == 1 -> float16")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
# output in the same directory as the model
|
|
||||||
dir_model = Path(sys.argv[1])
|
|
||||||
|
|
||||||
with open(dir_model / "vocab.txt", encoding="utf-8") as f:
|
|
||||||
vocab = f.readlines()
|
|
||||||
|
|
||||||
# possible data types
|
|
||||||
# ftype == 0 -> float32
|
|
||||||
# ftype == 1 -> float16
|
|
||||||
#
|
|
||||||
# map from ftype to string
|
|
||||||
ftype_str = ["f32", "f16"]
|
|
||||||
|
|
||||||
ftype = 1
|
|
||||||
if len(sys.argv) > 2:
|
|
||||||
ftype = int(sys.argv[2])
|
|
||||||
if ftype < 0 or ftype > 1:
|
|
||||||
print("Invalid ftype: " + str(ftype))
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
fname_out = dir_model / ("ggml-model-" + ftype_str[ftype] + ".gguf")
|
|
||||||
|
|
||||||
|
|
||||||
ARCH = gguf.MODEL_ARCH.BERT
|
|
||||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
|
||||||
|
|
||||||
print("gguf: get model metadata")
|
|
||||||
|
|
||||||
config = AutoConfig.from_pretrained(dir_model)
|
|
||||||
|
|
||||||
block_count = config.num_hidden_layers
|
|
||||||
gguf_writer.add_name("BERT")
|
|
||||||
gguf_writer.add_context_length(config.max_position_embeddings)
|
|
||||||
gguf_writer.add_embedding_length(config.hidden_size)
|
|
||||||
gguf_writer.add_feed_forward_length(config.intermediate_size)
|
|
||||||
gguf_writer.add_block_count(block_count)
|
|
||||||
gguf_writer.add_head_count(config.num_attention_heads)
|
|
||||||
gguf_writer.add_file_type(ftype)
|
|
||||||
|
|
||||||
print("gguf: get tokenizer metadata")
|
|
||||||
|
|
||||||
try:
|
|
||||||
with open(dir_model / "tokenizer.json", encoding="utf-8") as f:
|
|
||||||
tokenizer_json = json.load(f)
|
|
||||||
except FileNotFoundError as e:
|
|
||||||
print(f'Error: Missing {e.filename!r}', file=sys.stderr)
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
print("gguf: get wordpiece tokenizer vocab")
|
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
|
||||||
print(tokenizer.encode('I believe the meaning of life is'))
|
|
||||||
|
|
||||||
tokens: list[bytearray] = []
|
|
||||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
|
||||||
|
|
||||||
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
|
||||||
# This causes downstream issues with mismatched tensor sizes when running the inference
|
|
||||||
for i in range(config.vocab_size):
|
|
||||||
try:
|
|
||||||
text = reverse_vocab[i]
|
|
||||||
except KeyError:
|
|
||||||
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
|
|
||||||
pad_token = f"[PAD{i}]".encode("utf8")
|
|
||||||
text = bytearray(pad_token)
|
|
||||||
|
|
||||||
tokens.append(text)
|
|
||||||
|
|
||||||
gguf_writer.add_tokenizer_model("bert") # wordpiece
|
|
||||||
gguf_writer.add_token_list(tokens)
|
|
||||||
|
|
||||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
|
|
||||||
special_vocab.add_to_gguf(gguf_writer)
|
|
||||||
|
|
||||||
print("gguf: get tensor metadata")
|
|
||||||
|
|
||||||
model = AutoModel.from_pretrained(dir_model, config=config, low_cpu_mem_usage=True)
|
|
||||||
print(model)
|
|
||||||
|
|
||||||
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
|
|
||||||
|
|
||||||
list_vars = model.state_dict()
|
|
||||||
for name in list_vars.keys():
|
|
||||||
print(name, list_vars[name].shape, list_vars[name].dtype)
|
|
||||||
|
|
||||||
for name in list_vars.keys():
|
|
||||||
data = list_vars[name].squeeze().numpy()
|
|
||||||
if name in ['embeddings.position_ids', 'pooler.dense.weight', 'pooler.dense.bias']:
|
|
||||||
continue
|
|
||||||
print("Processing variable:", name, "with shape:", data.shape)
|
|
||||||
|
|
||||||
n_dims = len(data.shape)
|
|
||||||
|
|
||||||
# ftype == 0 -> float32, ftype == 1 -> float16
|
|
||||||
if ftype == 1 and name[-7:] == ".weight" and n_dims == 2:
|
|
||||||
print(" Converting to float16")
|
|
||||||
data = data.astype(np.float16)
|
|
||||||
l_type = 1
|
|
||||||
else:
|
|
||||||
l_type = 0
|
|
||||||
|
|
||||||
# map tensor names
|
|
||||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
|
||||||
if new_name is None:
|
|
||||||
print("Can not map tensor '" + name + "'")
|
|
||||||
sys.exit()
|
|
||||||
|
|
||||||
gguf_writer.add_tensor(new_name, data)
|
|
||||||
|
|
||||||
|
|
||||||
print("gguf: write header")
|
|
||||||
gguf_writer.write_header_to_file()
|
|
||||||
print("gguf: write metadata")
|
|
||||||
gguf_writer.write_kv_data_to_file()
|
|
||||||
print("gguf: write tensors")
|
|
||||||
gguf_writer.write_tensors_to_file()
|
|
||||||
|
|
||||||
gguf_writer.close()
|
|
||||||
|
|
||||||
print(f"gguf: model successfully exported to '{fname_out}'")
|
|
||||||
print()
|
|
@ -1,165 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Convert GPT-J-6B h5 transformer model to ggml format
|
|
||||||
#
|
|
||||||
# Load the model using GPTJForCausalLM.
|
|
||||||
# Iterate over all variables and write them to a binary file.
|
|
||||||
#
|
|
||||||
# For each variable, write the following:
|
|
||||||
# - Number of dimensions (int)
|
|
||||||
# - Name length (int)
|
|
||||||
# - Dimensions (int[n_dims])
|
|
||||||
# - Name (char[name_length])
|
|
||||||
# - Data (float[n_dims])
|
|
||||||
#
|
|
||||||
# By default, the bigger matrices are converted to 16-bit floats.
|
|
||||||
# This can be disabled by adding the "ftype" CLI argument.
|
|
||||||
#
|
|
||||||
# At the start of the ggml file we write the model parameters
|
|
||||||
# and vocabulary.
|
|
||||||
#
|
|
||||||
|
|
||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
import sys
|
|
||||||
import struct
|
|
||||||
import json
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import gguf
|
|
||||||
import numpy as np
|
|
||||||
from transformers import AutoConfig, AutoTokenizer, GPTJForCausalLM
|
|
||||||
from transformers.models.gpt2 import tokenization_gpt2
|
|
||||||
|
|
||||||
|
|
||||||
if not 2 <= len(sys.argv) < 4:
|
|
||||||
print("Usage: python {} dir-model [ftype]\n".format(Path(__file__).name))
|
|
||||||
print(" ftype == 0 -> float32")
|
|
||||||
print(" ftype == 1 -> float16")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
# output in the same directory as the model
|
|
||||||
dir_model = Path(sys.argv[1])
|
|
||||||
fname_out = dir_model / "ggml-model.gguf"
|
|
||||||
|
|
||||||
# possible data types
|
|
||||||
# ftype == 0 -> float32
|
|
||||||
# ftype == 1 -> float16
|
|
||||||
#
|
|
||||||
# map from ftype to string
|
|
||||||
ftype_str = ["f32", "f16"]
|
|
||||||
|
|
||||||
ftype = 1
|
|
||||||
if len(sys.argv) > 2:
|
|
||||||
ftype = int(sys.argv[2])
|
|
||||||
if ftype < 0 or ftype > 1:
|
|
||||||
print("Invalid ftype: " + str(ftype))
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
fname_out = dir_model / ("ggml-model-" + ftype_str[ftype] + ".gguf")
|
|
||||||
|
|
||||||
|
|
||||||
ARCH = gguf.MODEL_ARCH.GPTJ
|
|
||||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
|
||||||
|
|
||||||
print("gguf: get model metadata")
|
|
||||||
|
|
||||||
config = AutoConfig.from_pretrained(dir_model)
|
|
||||||
|
|
||||||
block_count = config.n_layer
|
|
||||||
gguf_writer.add_name("GPT-J")
|
|
||||||
gguf_writer.add_context_length(config.n_positions)
|
|
||||||
gguf_writer.add_embedding_length(config.n_embd)
|
|
||||||
gguf_writer.add_block_count(block_count)
|
|
||||||
gguf_writer.add_feed_forward_length(4 * config.n_embd)
|
|
||||||
gguf_writer.add_head_count(config.n_head)
|
|
||||||
gguf_writer.add_rope_dimension_count(config.rotary_dim)
|
|
||||||
gguf_writer.add_layer_norm_eps(config.layer_norm_epsilon)
|
|
||||||
gguf_writer.add_file_type(ftype)
|
|
||||||
|
|
||||||
print("gguf: get gpt2 tokenizer vocab")
|
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
|
||||||
|
|
||||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
|
||||||
byte_encoder = tokenization_gpt2.bytes_to_unicode()
|
|
||||||
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
|
||||||
|
|
||||||
tokens: list[bytearray] = []
|
|
||||||
|
|
||||||
for i in range(config.vocab_size):
|
|
||||||
if i in reverse_vocab:
|
|
||||||
try:
|
|
||||||
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
|
|
||||||
except KeyError:
|
|
||||||
text = bytearray()
|
|
||||||
for c in reverse_vocab[i]:
|
|
||||||
if ord(c) < 256: # single byte character
|
|
||||||
text.append(byte_decoder[c])
|
|
||||||
else: # multibyte special token character
|
|
||||||
text.extend(c.encode('utf-8'))
|
|
||||||
else:
|
|
||||||
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
|
|
||||||
pad_token = f"[PAD{i}]".encode("utf8")
|
|
||||||
text = bytearray(pad_token)
|
|
||||||
|
|
||||||
tokens.append(text)
|
|
||||||
|
|
||||||
|
|
||||||
gguf_writer.add_tokenizer_model("gpt2")
|
|
||||||
gguf_writer.add_token_list(tokens)
|
|
||||||
|
|
||||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
|
|
||||||
special_vocab.add_to_gguf(gguf_writer)
|
|
||||||
|
|
||||||
print("gguf: get tensor metadata")
|
|
||||||
|
|
||||||
model = GPTJForCausalLM.from_pretrained(dir_model, config=config, low_cpu_mem_usage=True)
|
|
||||||
#print (model)
|
|
||||||
|
|
||||||
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
|
|
||||||
|
|
||||||
list_vars = model.state_dict()
|
|
||||||
#print (list_vars)
|
|
||||||
|
|
||||||
for name in list_vars.keys():
|
|
||||||
data = list_vars[name].squeeze().numpy()
|
|
||||||
print("Processing variable:", name, "with shape:", data.shape)
|
|
||||||
|
|
||||||
# we don't need these
|
|
||||||
if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"):
|
|
||||||
print(" Skipping variable:", name)
|
|
||||||
continue
|
|
||||||
|
|
||||||
n_dims = len(data.shape)
|
|
||||||
|
|
||||||
# ftype == 0 -> float32, ftype == 1 -> float16
|
|
||||||
ftype_cur = 0
|
|
||||||
if ftype == 1 and name[-7:] == ".weight" and n_dims == 2:
|
|
||||||
print(" Converting to float16")
|
|
||||||
data = data.astype(np.float16)
|
|
||||||
ftype_cur = 1
|
|
||||||
elif ftype == 1 or data.dtype != np.float32:
|
|
||||||
print(" Converting to float32")
|
|
||||||
data = data.astype(np.float32)
|
|
||||||
ftype_cur = 0
|
|
||||||
|
|
||||||
# map tensor names
|
|
||||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
|
||||||
if new_name is None:
|
|
||||||
print("Can not map tensor '" + name + "'")
|
|
||||||
sys.exit()
|
|
||||||
|
|
||||||
gguf_writer.add_tensor(new_name, data)
|
|
||||||
|
|
||||||
|
|
||||||
print("gguf: write header")
|
|
||||||
gguf_writer.write_header_to_file()
|
|
||||||
print("gguf: write metadata")
|
|
||||||
gguf_writer.write_kv_data_to_file()
|
|
||||||
print("gguf: write tensors")
|
|
||||||
gguf_writer.write_tensors_to_file()
|
|
||||||
|
|
||||||
gguf_writer.close()
|
|
||||||
|
|
||||||
print(f"gguf: model successfully exported to '{fname_out}'")
|
|
||||||
print()
|
|
@ -323,15 +323,11 @@ if (LLMODEL_KOMPUTE)
|
|||||||
set(MODEL_IMPL_TARGETS
|
set(MODEL_IMPL_TARGETS
|
||||||
llamamodel-mainline-kompute
|
llamamodel-mainline-kompute
|
||||||
llamamodel-mainline-kompute-avxonly
|
llamamodel-mainline-kompute-avxonly
|
||||||
gptj-kompute
|
|
||||||
gptj-kompute-avxonly
|
|
||||||
)
|
)
|
||||||
else()
|
else()
|
||||||
set(MODEL_IMPL_TARGETS
|
set(MODEL_IMPL_TARGETS
|
||||||
llamamodel-mainline-cpu
|
llamamodel-mainline-cpu
|
||||||
llamamodel-mainline-cpu-avxonly
|
llamamodel-mainline-cpu-avxonly
|
||||||
gptj-cpu
|
|
||||||
gptj-cpu-avxonly
|
|
||||||
)
|
)
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
@ -426,11 +426,6 @@ bool Chat::deserialize(QDataStream &stream, int version)
|
|||||||
|
|
||||||
bool discardKV = m_modelInfo.id().isEmpty();
|
bool discardKV = m_modelInfo.id().isEmpty();
|
||||||
|
|
||||||
// Prior to version 2 gptj models had a bug that fixed the kv_cache to F32 instead of F16 so
|
|
||||||
// unfortunately, we cannot deserialize these
|
|
||||||
if (version < 2 && m_modelInfo.filename().contains("gpt4all-j"))
|
|
||||||
discardKV = true;
|
|
||||||
|
|
||||||
if (version > 2) {
|
if (version > 2) {
|
||||||
stream >> m_collections;
|
stream >> m_collections;
|
||||||
emit collectionListChanged(m_collections);
|
emit collectionListChanged(m_collections);
|
||||||
|
@ -19,7 +19,7 @@
|
|||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
|
|
||||||
#define CHAT_FORMAT_MAGIC 0xF5D553CC
|
#define CHAT_FORMAT_MAGIC 0xF5D553CC
|
||||||
#define CHAT_FORMAT_VERSION 8
|
#define CHAT_FORMAT_VERSION 9
|
||||||
|
|
||||||
class MyChatListModel: public ChatListModel { };
|
class MyChatListModel: public ChatListModel { };
|
||||||
Q_GLOBAL_STATIC(MyChatListModel, chatListModelInstance)
|
Q_GLOBAL_STATIC(MyChatListModel, chatListModelInstance)
|
||||||
|
@ -37,7 +37,6 @@ using namespace Qt::Literals::StringLiterals;
|
|||||||
//#define DEBUG
|
//#define DEBUG
|
||||||
//#define DEBUG_MODEL_LOADING
|
//#define DEBUG_MODEL_LOADING
|
||||||
|
|
||||||
#define GPTJ_INTERNAL_STATE_VERSION 0
|
|
||||||
#define LLAMA_INTERNAL_STATE_VERSION 0
|
#define LLAMA_INTERNAL_STATE_VERSION 0
|
||||||
|
|
||||||
class LLModelStore {
|
class LLModelStore {
|
||||||
@ -550,7 +549,6 @@ bool ChatLLM::loadNewModel(const ModelInfo &modelInfo, QVariantMap &modelLoadPro
|
|||||||
|
|
||||||
switch (m_llModelInfo.model->implementation().modelType()[0]) {
|
switch (m_llModelInfo.model->implementation().modelType()[0]) {
|
||||||
case 'L': m_llModelType = LLModelType::LLAMA_; break;
|
case 'L': m_llModelType = LLModelType::LLAMA_; break;
|
||||||
case 'G': m_llModelType = LLModelType::GPTJ_; break;
|
|
||||||
default:
|
default:
|
||||||
{
|
{
|
||||||
m_llModelInfo.resetModel(this);
|
m_llModelInfo.resetModel(this);
|
||||||
@ -1057,7 +1055,6 @@ bool ChatLLM::serialize(QDataStream &stream, int version, bool serializeKV)
|
|||||||
if (version > 1) {
|
if (version > 1) {
|
||||||
stream << m_llModelType;
|
stream << m_llModelType;
|
||||||
switch (m_llModelType) {
|
switch (m_llModelType) {
|
||||||
case GPTJ_: stream << GPTJ_INTERNAL_STATE_VERSION; break;
|
|
||||||
case LLAMA_: stream << LLAMA_INTERNAL_STATE_VERSION; break;
|
case LLAMA_: stream << LLAMA_INTERNAL_STATE_VERSION; break;
|
||||||
default: Q_UNREACHABLE();
|
default: Q_UNREACHABLE();
|
||||||
}
|
}
|
||||||
@ -1081,8 +1078,6 @@ bool ChatLLM::serialize(QDataStream &stream, int version, bool serializeKV)
|
|||||||
if (version >= 7) {
|
if (version >= 7) {
|
||||||
stream << m_ctx.n_ctx;
|
stream << m_ctx.n_ctx;
|
||||||
}
|
}
|
||||||
stream << quint64(m_ctx.logits.size());
|
|
||||||
stream.writeRawData(reinterpret_cast<const char*>(m_ctx.logits.data()), m_ctx.logits.size() * sizeof(float));
|
|
||||||
stream << quint64(m_ctx.tokens.size());
|
stream << quint64(m_ctx.tokens.size());
|
||||||
stream.writeRawData(reinterpret_cast<const char*>(m_ctx.tokens.data()), m_ctx.tokens.size() * sizeof(int));
|
stream.writeRawData(reinterpret_cast<const char*>(m_ctx.tokens.data()), m_ctx.tokens.size() * sizeof(int));
|
||||||
saveState();
|
saveState();
|
||||||
@ -1139,12 +1134,9 @@ bool ChatLLM::deserialize(QDataStream &stream, int version, bool deserializeKV,
|
|||||||
if (!discardKV) m_ctx.n_ctx = n_ctx;
|
if (!discardKV) m_ctx.n_ctx = n_ctx;
|
||||||
}
|
}
|
||||||
|
|
||||||
quint64 logitsSize;
|
if (version < 9) {
|
||||||
stream >> logitsSize;
|
quint64 logitsSize;
|
||||||
if (!discardKV) {
|
stream >> logitsSize;
|
||||||
m_ctx.logits.resize(logitsSize);
|
|
||||||
stream.readRawData(reinterpret_cast<char*>(m_ctx.logits.data()), logitsSize * sizeof(float));
|
|
||||||
} else {
|
|
||||||
stream.skipRawData(logitsSize * sizeof(float));
|
stream.skipRawData(logitsSize * sizeof(float));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -29,7 +29,6 @@ using namespace Qt::Literals::StringLiterals;
|
|||||||
class QDataStream;
|
class QDataStream;
|
||||||
|
|
||||||
enum LLModelType {
|
enum LLModelType {
|
||||||
GPTJ_,
|
|
||||||
LLAMA_,
|
LLAMA_,
|
||||||
API_,
|
API_,
|
||||||
};
|
};
|
||||||
|
@ -3,11 +3,8 @@ set(COMPONENT_NAME_MAIN "@COMPONENT_NAME_MAIN@")
|
|||||||
set(CMAKE_CURRENT_SOURCE_DIR "@CMAKE_CURRENT_SOURCE_DIR@")
|
set(CMAKE_CURRENT_SOURCE_DIR "@CMAKE_CURRENT_SOURCE_DIR@")
|
||||||
set(GPT4ALL_SIGNING_ID "@MAC_SIGNING_IDENTITY@")
|
set(GPT4ALL_SIGNING_ID "@MAC_SIGNING_IDENTITY@")
|
||||||
execute_process(COMMAND ${MACDEPLOYQT} ${CPACK_TEMPORARY_INSTALL_DIRECTORY}/packages/${COMPONENT_NAME_MAIN}/data/bin/gpt4all.app -qmldir=${CMAKE_CURRENT_SOURCE_DIR} -verbose=2 -sign-for-notarization=${GPT4ALL_SIGNING_ID})
|
execute_process(COMMAND ${MACDEPLOYQT} ${CPACK_TEMPORARY_INSTALL_DIRECTORY}/packages/${COMPONENT_NAME_MAIN}/data/bin/gpt4all.app -qmldir=${CMAKE_CURRENT_SOURCE_DIR} -verbose=2 -sign-for-notarization=${GPT4ALL_SIGNING_ID})
|
||||||
file(GLOB MYGPTJLIBS ${CPACK_TEMPORARY_INSTALL_DIRECTORY}/packages/${COMPONENT_NAME_MAIN}/data/lib/libgptj*)
|
|
||||||
file(GLOB MYLLAMALIBS ${CPACK_TEMPORARY_INSTALL_DIRECTORY}/packages/${COMPONENT_NAME_MAIN}/data/lib/libllama*)
|
file(GLOB MYLLAMALIBS ${CPACK_TEMPORARY_INSTALL_DIRECTORY}/packages/${COMPONENT_NAME_MAIN}/data/lib/libllama*)
|
||||||
file(GLOB MYLLMODELLIBS ${CPACK_TEMPORARY_INSTALL_DIRECTORY}/packages/${COMPONENT_NAME_MAIN}/data/lib/libllmodel.*)
|
file(GLOB MYLLMODELLIBS ${CPACK_TEMPORARY_INSTALL_DIRECTORY}/packages/${COMPONENT_NAME_MAIN}/data/lib/libllmodel.*)
|
||||||
file(COPY ${MYGPTJLIBS}
|
|
||||||
DESTINATION ${CPACK_TEMPORARY_INSTALL_DIRECTORY}/packages/${COMPONENT_NAME_MAIN}/data/bin/gpt4all.app/Contents/Frameworks)
|
|
||||||
file(COPY ${MYLLAMALIBS}
|
file(COPY ${MYLLAMALIBS}
|
||||||
DESTINATION ${CPACK_TEMPORARY_INSTALL_DIRECTORY}/packages/${COMPONENT_NAME_MAIN}/data/bin/gpt4all.app/Contents/Frameworks)
|
DESTINATION ${CPACK_TEMPORARY_INSTALL_DIRECTORY}/packages/${COMPONENT_NAME_MAIN}/data/bin/gpt4all.app/Contents/Frameworks)
|
||||||
file(COPY ${MYLLMODELLIBS}
|
file(COPY ${MYLLMODELLIBS}
|
||||||
|
Loading…
Reference in New Issue
Block a user